首页 | 本学科首页   官方微博 | 高级检索  
检索        


Identification and relative contributions of human cytochrome P450 isoforms involved in the metabolism of glibenclamide and lansoprazole: evaluation of an approach based on the in vitro substrate disappearance rate
Authors:Y Naritomi  S Terashita  A Kagayama
Institution:1. Biopharmaceutical and Pharmacokinetic Research Laboratories, Fujisawa Pharmaceutical Co., Ltd, Kashima, Yodogawa-ku, Osaka 532-8514, Japanyoichi_naritomi@po.fujisawa.co.jp;3. Biopharmaceutical and Pharmacokinetic Research Laboratories, Fujisawa Pharmaceutical Co., Ltd, Kashima, Yodogawa-ku, Osaka 532-8514, Japan
Abstract:1.?The identification and relative contributions of human cytochrome P450 (CYP) enzymes involved in the metabolism of glibenclamide and lansoprazole in human liver microsomes were investigated using an approach based on the in vitro disappearance rate of unchanged drug.

2.?Recombinant CYP2C19 and CYP3A4 catalysed a significant disappearance of both drugs. When the contribution of CYPs to the intrinsic clearance (CLint) of drugs in pooled human microsomes was estimated by relative activity factors, contributions of CYP2C19 and CYP3A4 were determined to be 4.6 and 96.4% for glibenclamide, and 75.1 and 35.6% for lansoprazole, respectively.

3.?CLint of glibenclamide correlated very well with CYP3A4 marker activity, whereas the CLint of lansoprazole significantly correlated with CYP2C19 and CYP3A4 marker activities in human liver microsomes from 12 separate individuals. Effects of CYP-specific inhibitors and anti-CYP3A serum on the CLint of drugs in pooled human liver microsomes reflected the relative contributions of CYP2C19 and CYP3A4.

4.?The results suggest that glibenclamide is mainly metabolized by CYP3A4, whereas lansoprazole is metabolized by both CYP2C19 and CYP3A4 in human liver microsomes. This approach, based on the in vitro drug disappearance rate, is useful for estimating CYP identification and their contribution to drug discovery.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号