首页 | 本学科首页   官方微博 | 高级检索  
     


Demonstration of an inwardly rectifying K+ current component modulated by thyrotropin-releasing hormone and caffeine in GH3 rat anterior pituitary cells
Authors:F. Barros  Donato del Camino  Luis A. Pardo  Teresa Palomero  Teresa Giráldez  Pilar de la Peña  D. del Camino
Affiliation:Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Oviedo, E-33006, Oviedo, Spain, ES
Max-Planck-Institut für experimentelle Medizin, Abt. Molekular Biologie Neuronaler Signale, D-37075, G?ttingen. Germany, DE
Abstract: Reduction of an inwardly rectifying K+ current by thyrotropin-releasing hormone (TRH) and caffeine has been considered to be an important determinant of electrical activity increases in GH3 rat anterior pituitary cells. However, the existence of an inwardly rectifying K+ current component was recently regarded as a misidentification of an M-like outward current, proposed to be the TRH target in pituitary cells, including GH3 cells. In this report, an inwardly rectifying component of K+ current is indeed demonstrated in perforated-patch voltage-clamped GH3 cells. The degree of rectification varied from cell to cell, but both TRH and caffeine specifically blocked a fraction of current with strong rectification in the hyperpolarizing direction. Use of ramp pulses to continuously modify the membrane potential demonstrated a prominent blockade even in cells with no current reduction at voltages at which M-currents are active. Depolarization steps to positive voltages at the maximum of the inward current induced a caffeine-sensitive instantaneous outward current followed by a single exponential decay. The magnitude of this current was modified in a biphasic way according to the duration of the previous hyperpolarization step. The kinetic characteristics of the current are compatible with the possibility that removal from inactivation of a fast-inactivating delayed rectifier causes the hyperpolarization-induced current. Furthermore, the inwardly rectifying current was blocked by astemizole, a potent and selective inhibitor of human ether-á-go-go -related gene (HERG) K+ channels. Along with other pharmacological and kinetic evidence, this indicates that the secretagogue-regulated current is probably mediated by a HERG-like K+ channel. Addition of astemizole to current-clamped cells induced clear increases in the frequency of action potential production. Thus, an inwardly-rectifying K+ current and not an M-like outward current seems to be involved in TRH and caffeine modulation of electrical activity in GH3 cells. Received: 15 May 1997 / Received after revision and accepted: 24 July 1997
Keywords:  Inwardly rectifying K+ current  Thyrotropin-releasing hormone  GH3 cell  HERG-like  K+ channel  Anterior pituitary  Electrical activity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号