首页 | 本学科首页   官方微博 | 高级检索  
检索        


Programmed Death Ligand-1 on Microglia Regulates Th1 Differentiation <Emphasis Type="Italic">via</Emphasis> Nitric Oxide in Experimental Autoimmune Encephalomyelitis
Authors:Jingxia Hu  Hao He  Zhengang Yang  Guangming Zhu  Li Kang  Xiuli Jing  Hai Lu  Wengang Song  Bo Bai  Hua Tang
Institution:1.College of Life Science,Shandong Agricultural University,Taian,China;2.Institute of Immunology,Taishan Medical University,Taian,China;3.Department of ENT,Center Hospital of Taian City,Taian,China;4.Department of Neurobiology,Jining Medical University,Jining,China
Abstract:Microglia are considered to be potential antigen-presenting cells and have the ability to present antigen under pathological conditions. Nevertheless, whether and how microglia are involved in immune regulation are largely unknown. Here, we investigated the suppressive activity of microglia during experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein, with the goal of understanding their role in regulating the T cell reaction. Using flow cytometric analysis, we found that microglia were characterized by increased cell number and up-regulated programmed death ligand-1 (PD-L1) at the peak phase of EAE. Meanwhile, both the CD4+ T cells and microglia that infiltrated the central nervous system expressed higher levels of PD1, the receptor for PD-L1, accompanied by a decline of Th1 cells. In an ex vivo co-culture system, microglia from EAE mice inhibited the proliferation of antigen-specific CD4+ T cells and the differentiation of Th1 cells, and this was significantly inhibited by PD-L1 blockade. Further, microglia suppressed Th1 cells via nitric oxide (NO), the production of which was dependent on PD-L1. Thus, these data suggest a scenario in which microglia are involved in the regulation of EAE by suppressing Th1-cell differentiation via the PD-L1-NO pathway.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号