首页 | 本学科首页   官方微博 | 高级检索  
检索        


Fusogenic pH sensitive liposomal formulation for rapamycin: Improvement of antiproliferative effect
Authors:Saeed Ghanbarzadeh  Arash Khorrami  Leila Mohamed Khosroshahi
Institution:1. Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences TabrizIran;2. Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences TabrizIran;3. Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences TabrizIran;4. Department of Pharmacology &5. Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences TabrizIran;6. Department of Immunology, Faculty of Medicine, Medical Biology Research Center, Kermanshah University of Medical Science KermanshahIran
Abstract:Context: Liposomes are increasingly employed to deliver chemotherapeutic agents, antisense oligonucleotides, and genes to various therapeutic targets.

Objective: The present investigation evaluates the ability of fusogenic pH-sensitive liposomes of rapamycin in increasing its antiproliferative effect on human breast adenocarcinoma (MCF-7) cell line.

Materials and methods: Cholesterol (Chol) and dipalmitoylphosphatidylcholine (DPPC) (DPPC:Chol, 7:3) were used to prepare conventional rapamycin liposomes by a modified ethanol injection method. Dioleoylphosphatidylethanolamine (DOPE) was used to produce fusogenic and pH-sensitive properties in liposomes simultaneously (DPPC:Chol:DOPE, 7:3:4.2). The prepared liposomes were characterized by their size, zeta potential, encapsulation efficiency percent (EE%), and chemical stability during 6 months. The antiproliferative effects of both types of rapamycin liposomes (10, 25, and 50?nmol/L) with optimized formulations were assessed on MCF-7 cells, as cancerous cells, and human umbilical vein endothelial cells (HUVEC), as healthy cells, employing the diphenyltetrazolium bromide (MTT) assay for 72?h.

Results and discussion: The particle size, zeta potential, and EE% of the liposomes were 165?±?12.3 and 178?±?15.4?nm, ?39.6?±?1.3, and ?41.2?±?2.1?mV as well as 76.9?±?2.6 and 76.9?±?2.6% in conventional and fusogenic pH-sensitive liposomes, respectively. Physicochemical stability results indicated that both liposome types were relatively stable at 4?°C than 25?°C. In vitro antiproliferative evaluation showed that fusogenic pH-sensitive liposomes had better antiproliferative effects on MCF-7 cells compared to the conventional liposomes. Conversely, fusogenic pH-sensitive liposomes had less cytotoxicity on HUVEC cell line.
Keywords:Antiproliferative effect  breast cancer  fusogenic pH-sensitive liposome  rapamycin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号