首页 | 本学科首页   官方微博 | 高级检索  
检索        


Diabetic Cardiomiopathy Progression is Triggered by miR122-5p and Involves Extracellular Matrix: A 5-Year Prospective Study
Authors:Riccardo Pofi  Elisa Giannetta  Nicola Galea  Marco Francone  Federica Campolo  Federica Barbagallo  Daniele Gianfrilli  Mary Anna Venneri  Tiziana Filardi  Cristiano Cristini  Gabriele Antonini  Roberto Badagliacca  Giacomo Frati  Andrea Lenzi  Iacopo Carbone  Andrea M Isidori
Institution:1. Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy;2. Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy;3. Department of Obstetrical and Gynaecological Sciences and Urological Sciences, “Sapienza” University of Rome, Rome, Italy;4. Department of Cardiovascular and Respiratory Diseases, “Sapienza” University of Rome, Rome, Italy;5. Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy;6. Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) NEUROMED, Pozzilli, Italy
Abstract:ObjectivesThe purpose of this study was to follow the long-term progression of diabetic cardiomyopathy by combining cardiac magnetic resonance (CMR) and molecular analysis.BackgroundThe evolution of diabetic cardiomyopathy to heart failure affects patients’morbidity and mortality. CMR is the gold standard to assess cardiac remodeling, but there is a lack of markers linked to the mechanism of diabetic cardiomyopathy progression.MethodsFive-year longitudinal study on patients with type 2 diabetes mellitus (T2DM) enrolled in the CECSID (Cardiovascular Effects of Chronic Sildenafil in Men With Type 2 Diabetes) trial compared with nondiabetic age-matched controls. CMR with tagging together with metabolic and molecular assessments were performed at baseline and 5-year follow-up.ResultsA total of 79 men (age 64 ± 8 years) enrolled, comprising 59 men with T2DM compared with 20 nondiabetic age-matched controls. Longitudinal CMR with tagging showed an increase in ventricular mass (ΔLVMi = 13.47 ± 29.66 g/m2; p = 0.014) and a borderline increase in end-diastolic volume (ΔEDVi = 5.16 ± 14.71 ml/m2; p = 0.056) in men with T2DM. Cardiac strain worsened (Δσ = 1.52 ± 3.85%; p = 0.033) whereas torsion was unchanged (Δθ = 0.24 ± 4.04°; p = 0.737), revealing a loss of the adaptive equilibrium between strain and torsion. Contraction dynamics showed a decrease in the systolic time-to-peak (ΔTtP = ?35.18 ± 28.81 ms; p < 0.001) and diastolic early recoil-rate (ΔRR = ?20.01 ± 19.07 s-1; p < 0.001). The ejection fraction and metabolic parameters were unchanged. Circulating miR microarray revealed an up-regulation of miR122-5p. Network analysis predicted the matrix metalloproteinases (MMPs) MMP-16 and MMP-2 and their regulator (tissue inhibitors of metalloproteinases) as targets. In db/db mice we demonstrated that miR122-5p expression is associated with diabetic cardiomyopathy, that in the diabetic heart is overexpressed, and that, in vitro, it regulates MMP-2. Finally, we demonstrated that miR122-5p overexpression affects the extracellular matrix through MMP-2 modulation.ConclusionsWithin 5 years of diabetic cardiomyopathy onset, increasing cardiac hypertrophy is associated with progressive impairment in strain, depletion of the compensatory role of torsion, and changes in viscoelastic contraction dynamics. These changes are independent of glycemic control and paralleled by the up-regulation of specific microRNAs targeting the extracellular matrix. (Cardiovascular Effects of Chronic Sildenafil in Men With Type 2 Diabetes CECSID]; NCT00692237)
Keywords:cardiac hypertrophy  cardiac magnetic resonance  diabetes mellitus  heart failure with preserved ejection fraction  metalloproteinase  CMR"}  {"#name":"keyword"  "$":{"id":"kwrd0060"}  "$$":[{"#name":"text"  "_":"cardiac magnetic resonance  ECM"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "_":"extracellular matrix  EDVi"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"indexed end-diastolic volume  EF"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"ejection fraction  HF"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"heart failure  HfpEF"}  {"#name":"keyword"  "$":{"id":"kwrd0110"}  "$$":[{"#name":"text"  "_":"heart failure with preserved ejection fraction  HfrEF"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"heart failure with reduced ejection fraction  LGE"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"late gadolinium enhancement  LV"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"left ventricle  LVMi"}  {"#name":"keyword"  "$":{"id":"kwrd0150"}  "$$":[{"#name":"text"  "_":"indexed left ventricular mass  miRNA"}  {"#name":"keyword"  "$":{"id":"kwrd0160"}  "$$":[{"#name":"text"  "_":"microRNA  MMP"}  {"#name":"keyword"  "$":{"id":"kwrd0170"}  "$$":[{"#name":"text"  "_":"matrix metalloproteinase  mRNA"}  {"#name":"keyword"  "$":{"id":"kwrd0180"}  "$$":[{"#name":"text"  "_":"messenger RNA  qPCR"}  {"#name":"keyword"  "$":{"id":"kwrd0190"}  "$$":[{"#name":"text"  "_":"quantitative polymerase chain reaction  RR"}  {"#name":"keyword"  "$":{"id":"kwrd0200"}  "$$":[{"#name":"text"  "_":"recoil rate  TtP"}  {"#name":"keyword"  "$":{"id":"kwrd0220"}  "$$":[{"#name":"text"  "_":"time to peak  T2DM"}  {"#name":"keyword"  "$":{"id":"kwrd0230"}  "$$":[{"#name":"text"  "_":"type 2 diabetes mellitus
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号