Hydrophilized polycaprolactone nanofiber mesh-embedded poly(glycolic-co-lactic acid) membrane for effective guided bone regeneration |
| |
Authors: | Cho Wan Jin Kim Jun Ho Oh Se Heang Nam Hyun Hee Kim Jin Man Lee Jin Ho |
| |
Affiliation: | Department of Advanced Materials, Hannam University, 461-6 Jeonmin Dong, Yuseong Gu, Daejeon, Korea. |
| |
Abstract: | A novel guided bone regeneration (GBR) membrane was fabricated by an immersion precipitation of poly (glycolic-co-lactic acid) (PLGA)/Pluronic F127 solution impregnated in an electrospun polycaprolactone (PCL)/Tween 80 nanofiber mesh. The prepared PCL/Tween 80 nanofiber mesh-embedded PLGA/Pluronic F127 membrane (hydrophilized PCL/PLGA hybrid membrane) had nano-size pores on the top side (which can prevent from fibrous connective tissue infiltration but allow permeation of oxygen and nutrients) and micro-size pores on the bottom side (which can improve adhesiveness with bone). From the comparisons of mechanical properties (tensile and suture pullout strengths), model nutrient (FITC-labeled bovine serum albumin) permeability, and bone regeneration behavior using a rat model (skull bone defect) of the hybrid membrane with those of PLGA/Pluronic F127 membrane (asymmetrically porous, hydrophilized PLGA membrane), PCL/Tween 80 nanofiber mesh (electrospun, hydrophilized PCL nanofiber mesh), and a commercialized GBR membrane, Bio-Gide (collagen type I/III membrane), it was observed that the PCL/PLGA hybrid membrane seems to be highly desirable as a GBR membrane for the selective permeability caused by its unique morphology and osteoconductivity provided by several tens micro-size pores of the bottom side as well as the excellent mechanical strengths by the hybridization of porous PLGA membrane and PCL nanofiber mesh. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|