首页 | 本学科首页   官方微博 | 高级检索  
检索        


Lysophospholipase inhibition by organophosphorus toxicants
Authors:Quistad Gary B  Casida John E
Institution:Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3112, USA.
Abstract:Lysophospholipases (LysoPLAs) are a large family of enzymes for removing lysophospholipids from cell membranes. Potent inhibitors are needed to define the importance of LysoPLAs as targets for toxicants and potential therapeutics. This study considers organophosphorus (OP) inhibitors with emphasis on mouse brain total LysoPLA activity relative to the mipafox-sensitive neuropathy target esterase (NTE)-LysoPLA recently established as 17% of the total activity and important in the action of OP delayed toxicants. The most potent inhibitors of total LysoPLA in mouse brain are isopropyl dodecylphosphonofluoridate (also for LysoPLA of Vibrio bacteria), ethyl octylphosphonofluoridate (EOPF), and two alkyl-benzodioxaphosphorin 2-oxides (BDPOs)(S)-octyl and dodecyl] (IC50 2-8 nM). OP inhibitors acting in vitro and in vivo differentiate a more sensitive portion but not a distinct NTE-LysoPLA compared with total LysoPLA activity. For 10 active inhibitors, NTE-LysoPLA is 17-fold more sensitive than total LysoPLA, but structure-activity comparisons give a good correlation (r(2) = 0.94) of IC50 values, suggesting active site structural similarity or identity. In mice 4 h after intraperitoneal treatment with discriminating doses, EOPF, tribufos (a plant defoliant), and dodecanesulfonyl fluoride inhibit 41-57% of the total brain LysoPLA and 85-99% of the NTE-LysoPLA activity. Total LysoPLA as well as NTE-LysoPLA is decreased in activity in Nte(+/-)-haploinsufficient mice compared to their Nte(+/+) littermates. The lysolecithin level of spinal cord but not brain is elevated significantly following EOPF treatment (3 mg/kg), thereby focusing attention on localized rather than general alterations in lysophospholipid metabolism in OP-induced hyperactivity and toxicity.
Keywords:Ethyl octylphosphonofluoridate  Lysolecithin  Lysophospholipase  Neuropathy target esterase  Organophosphorus inhibitor  Vibrio
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号