首页 | 本学科首页   官方微博 | 高级检索  
检索        


Dosimetric validation of compensator for their use in clinical routine, in conformation radiotherapy]
Authors:H El-Balaa  J-N Foulquier  D Lefkopoulos  K Keraudy  S Chammas  J Rolland  E Touboul
Institution:Service de radiothérapie, h?pital Tenon, 4, rue de la Chine, 75020 Paris, France. hanna_balaa@yahoo.fr
Abstract:PURPOSE: The aim of this work was to establish the acquisition, calculation and 3D compensator manufacturing optimum parameters. This methodology is based on virtual simulation and 3D dosimetry. MATERIALS AND METHODS: The material used is a helicoidal CT (PQ 5000-Marconi), a virtual simulation system (AcQsim version 4-Marconi), a Treatment Planning System (Dosigray), a linear accelerator Saturne 43 (Varian, CGR), an automated milling system for compensator filters (Autimo 2.5 D-HEK), a water tank phantom (wellhofer) and an homogeneous phantom with simple patterns in order to simulate the obliquity surface of patient body. The compensator was composed by granulate tin because this material ensures a good profile modulation. The compensation plane has been calculated at 80% to dose profile. The compensator thickness profile has been calculated with different acquisition (slice thickness, pitch factor), calculation (attenuation coefficient, bixel) and fabrication parameters (drill diameter, specification of milling system). RESULTS: After this preliminary study, we have defined the optimum parameters for the compensator realization. We have observed that the slice thickness, bixel size and drill diameter are the parameters that mainly affect the profiles homogeneity. The choice of parameters with smaller dimensions S = 3 mm; B = 3 mm, F = 3 mm, improve the profiles homogeneity. Though, for manufacture times compatible with the clinical routine, the selected parameters are S = 5 mm, B = 6 mm and F = 6 mm. Compensator can be used for any type of Linac. However, one must pay attention on their realization and their positioning on the beam central axis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号