首页 | 本学科首页   官方微博 | 高级检索  
     


Presynaptic activity and Ca2+ entry are required for the maintenance of NMDA receptor-independent LTP at visual cortical excitatory synapses
Authors:Liu Hong Nian  Kurotani Tohru  Ren Ming  Yamada Kazumasa  Yoshimura Yumiko  Komatsu Yukio
Affiliation:Dept. of Visual Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan.
Abstract:We have shown that some neural activity is required for the maintenance of long-term potentiation (LTP) at visual cortical inhibitory synapses. We tested whether this was also the case in N-methyl-d-aspartate (NMDA) receptor-independent LTP of excitatory connections in layer 2/3 cells of developing rat visual cortex. This LTP occurred after 2-Hz stimulation was applied for 15 min and always persisted for several hours while test stimulation was continued at 0.1 Hz. When test stimulation was stopped for 1 h after LTP induction, only one-third of the LTP instances disappeared, but most did disappear under a pharmacological suppression of spontaneous firing, indicating that LTP maintenance requires either evoked or spontaneous activities. LTP was totally abolished by a temporary blockade of action potentials with lidocaine or the removal of extracellular Ca(2+) after LTP induction, but it persisted under a voltage clamp of postsynaptic cells or after a temporary blockade of postsynaptic activity with the glutamate receptor antagonist kynurenate, suggesting that LTP maintenance requires presynaptic, but not postsynaptic, firing and Ca(2+) entry. More than one-half of the LTP instances were abolished after a pharmacological blockade of P-type Ca(2+) channels, whereas it persisted after either L-type or Ni(2+)-sensitive Ca(2+) channel blockades. These results show that the maintenance of NMDA receptor-independent excitatory LTP requires presynaptic firing and Ca(2+) channel activation as inhibitory LTP, although the necessary level of firing and Ca(2+) entry seems lower for the former than the latter and the Ca(2+) channel types involved are only partly the same.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号