首页 | 本学科首页   官方微博 | 高级检索  
检索        


Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level.
Authors:Jong-Kai Hsiao  Ming-Fong Tai  Hung-Hao Chu  Shin-Tai Chen  Hung Li  Dar-Ming Lai  Sung-Tsang Hsieh  Jaw-Lin Wang  Hon-Man Liu
Institution:Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.
Abstract:The purpose of this work was to evaluate the efficacy of labeling human mesenchymal stem cells (hMSCs) by ionic superparamagnetic iron oxide (SPIO) without a transfection agent and verifying its capability to be detected with clinical 1.5 T magnetic resonance (MR) at the single-cell level. Human hMSCs were incubated for 24 h with an ionic SPIO, Ferucarbotran. The labeling efficiency of hMSCs was determined by iron content measurement spectrophotometrically, and the influence of labeling on cell behavior was ascertained by examination of cell viability using the trypan blue exclusion method, cell proliferation analysis using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, mitochondrial membrane potential (MMP) change, differentiation capacity, and reactive oxygen species (ROS) production measured by dichlorofluorescein diacetate (DCFDA) fluorescent probe. Labeled hMSCs were scanned under 1.5 T MRI with three-dimensional (3D) and two-dimensional (2D) T(2)-weighted gradient echo (GRE) pulse sequences. Human hMSC labeling without transfection agent was efficient. The iron content in hMSCs was 23.4 pg Fe/cell. No significant change was found in viability, proliferation, MMP change, ROS production, or differentiation capacity. About 45.2% of the hMSCs could be detected using 1.5 T MRI at the single cell level with 3D GRE and four repetitions.
Keywords:iron oxide  stem cell  magnetic resonance  viability  cellular physiology  differentiation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号