首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of Baboon Anti-α-Galactosyl Antibody with Pig Tissues
Authors:Shoichi Maruyama, Edward Cantu, III, Cesare DeMartino, Catherine Y. Wang, Jonathan Chen, Futwan Al-Mohanna, Shaheen M. Nakeeb, Vivette D&#x  Agati, Benvenuto Pernis, Uri Galili, Gabriel Godman, David M. Stern,   Giuseppe Andres
Affiliation:Department of Physiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA.
Abstract:As barriers to xenotransplantation are surmounted, such as suppression of hyperacute rejection allowing improved graft survival, it becomes important to define longer-term host-xenograft interactions. To this end we have prepared in baboons high titer anti-alpha-Galactosyl (alphaGal) and anti-porcine aortic endothelial cell antibodies, similar to human natural xenoantibodies and reactive with epitopes of thyroglobulin, laminin, and heparan sulfate proteoglycans. When injected into pigs with a protocol similar to that used in the rat to show the nephritogenic potential of heterologous anti-laminin and anti-heparan sulfate proteoglycan antibodies, baboon immunoglobulins bound first to renal vascular endothelium, and later to interstitial cells, especially fibroblasts and macrophages, and to antigens in basement membranes and extracellular matrix, where they colocalized with laminin- and heparan sulfate proteoglycan-antibodies, and with bound Griffonia simplicifolia B4. A similar binding was observed in other organs. The pigs did not develop an acute complement-dependent inflammation, but rather chronic lesions of the basement membranes and the extracellular matrix. Incubation of renal fibroblasts with baboon anti-alpha-Galactosyl antibodies resulted in increased synthesis of transforming growth factor-beta and collagen, suggesting a possible basis for the fibrotic response. The results demonstrate that in this experimental model a consequence of alphaGal antibody interaction with porcine tissues, is immunoreactivity with alphaGal on matrix molecules and interstitial cells, priming mechanisms leading to fibrosis resembling that in chronic allograft rejection. The possibility that similar lesions may develop in long-surviving pig xenografts is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号