首页 | 本学科首页   官方微博 | 高级检索  
检索        


Pathological activity of familial Alzheimer's disease-associated mutant presenilin can be executed by six different gamma-secretase complexes
Authors:Shirotani Keiro  Tomioka Masanori  Kremmer Elisabeth  Haass Christian  Steiner Harald
Institution:Munich Center for Integrated Protein Science and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians-University, Schillerstr 44, Munich, Germany.
Abstract:gamma-Secretase is a protease complex, which catalyzes the final of two subsequent cleavages of the beta-amyloid precursor protein (APP) to release the amyloid-beta peptide (Abeta) implicated in Alzheimer's disease (AD) pathogenesis. In human cells, six gamma-secretase complexes exist, which are composed of either presenilin (PS) 1 or 2, the catalytic subunit, nicastrin, PEN-2, and either APH-1a (as S or L splice variants) or its homolog APH-1b. It is not known whether and how different APH-1 species contribute to the pathogenic activity of gamma-secretase complexes with familial AD (FAD)-associated mutant PS. Here we show that all known gamma-secretase complexes are active in APP processing and that all combinations of APH-1 variants with either FAD mutant PS1 or PS2 support pathogenic Abeta(42) production. Since our data suggest that pathogenic gamma-secretase activity cannot be attributed to a discrete gamma-secretase complex, we propose that all gamma-secretase complexes have to be explored and evaluated for their potential as AD drug target.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号