首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo targeting of human DC‐SIGN drastically enhances CD8+ T‐cell‐mediated protective immunity
Authors:Theresa Förg  Christian T. Mayer  Abdul Mannan Baru  Catharina Arnold‐Schrauf  Wendy W. J. Unger  Hakan Kalay  Yvette van Kooyk  Tim Sparwasser
Affiliation:1. Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), , Hannover, Germany;2. Department of Molecular Cell Biology and Immunology, VU University Medical Centre, , Amsterdam, The Netherlands
Abstract:Vaccination is one of the oldest yet still most effective methods to prevent infectious diseases. However, eradication of intracellular pathogens and treatment of certain diseases like cancer requiring efficient cytotoxic immune responses remain a medical challenge. In mice, a successful approach to induce strong cytotoxic CD8+ T‐cell (CTL) reactions is to target antigens to DCs using specific antibodies against surface receptors in combination with adjuvants. A major drawback for translating this strategy into one for the clinic is the lack of analogous targets in human DCs. DC‐SIGN (DC‐specific‐ICAM3‐grabbing‐nonintegrin/CD209) is a C‐type lectin receptor with potent endocytic capacity and a highly restricted expression on human immature DCs. Therefore, DC‐SIGN represents an ideal candidate for DC targeting. Using transgenic mice that express human DC‐SIGN under the control of the murine CD11c promoter (hSIGN mice), we explored the efficacy of anti‐DC‐SIGN antibodies to target antigens to DCs and induce protective immune responses in vivo. We show that anti‐DC‐SIGN antibodies conjugated to OVA induced strong and persistent antigen‐specific CD4+ and CD8+ T‐cell responses, which efficiently protected from infection with OVA‐expressing Listeria monocytogenes. Thus, we propose DC targeting via DC‐SIGN as a promising strategy for novel vaccination protocols against intracellular pathogens.
Keywords:Crosspresentation  DC‐SIGN  Dendritic cells  Listeria  Vaccine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号