首页 | 本学科首页   官方微博 | 高级检索  
     


Ancestral polymorphisms shape the adaptive radiation of Metrosideros across the Hawaiian Islands
Authors:Jae Young Choi  Xiaoguang Dai  Ornob Alam  Julie Z. Peng  Priyesh Rughani  Scott Hickey  Eoghan Harrington  Sissel Juul  Julien F. Ayroles  Michael D. Purugganan  Elizabeth A. Stacy
Abstract:Some of the most spectacular adaptive radiations begin with founder populations on remote islands. How genetically limited founder populations give rise to the striking phenotypic and ecological diversity characteristic of adaptive radiations is a paradox of evolutionary biology. We conducted an evolutionary genomics analysis of genus Metrosideros, a landscape-dominant, incipient adaptive radiation of woody plants that spans a striking range of phenotypes and environments across the Hawaiian Islands. Using nanopore-sequencing, we created a chromosome-level genome assembly for Metrosideros polymorpha var. incana and analyzed whole-genome sequences of 131 individuals from 11 taxa sampled across the islands. Demographic modeling and population genomics analyses suggested that Hawaiian Metrosideros originated from a single colonization event and subsequently spread across the archipelago following the formation of new islands. The evolutionary history of Hawaiian Metrosideros shows evidence of extensive reticulation associated with significant sharing of ancestral variation between taxa and secondarily with admixture. Taking advantage of the highly contiguous genome assembly, we investigated the genomic architecture underlying the adaptive radiation and discovered that divergent selection drove the formation of differentiation outliers in paired taxa representing early stages of speciation/divergence. Analysis of the evolutionary origins of the outlier single nucleotide polymorphisms (SNPs) showed enrichment for ancestral variations under divergent selection. Our findings suggest that Hawaiian Metrosideros possesses an unexpectedly rich pool of ancestral genetic variation, and the reassortment of these variations has fueled the island adaptive radiation.

Adaptive radiations exhibit extraordinary levels of morphological and ecological diversity (1). Although definitions of adaptive radiation vary (27), all center on ecological opportunity as a driver of adaptation and, ultimately, diversification (2, 810). Divergent selection, the primary mechanism underlying adaptive radiations, favors extreme phenotypes (11) and selects alleles that confer adaptation to unoccupied or under-utilized ecological niches. Differential adaptation results in divergence and, ultimately, reproductive isolation between populations (12). Adaptive radiations demonstrate the remarkable power of natural selection as a driver of biological diversity and provide excellent systems for studying evolutionary processes involved in diversification and speciation (13).Adaptive radiations on remote oceanic islands are especially interesting, as colonization of remote islands is expected to involve population bottlenecks that restrict genetic variation (14). Adaptive radiations in such settings are especially impressive and even paradoxical, given the generation of high species richness from an initially limited gene pool (15). Several classic examples of adaptive radiation occur on oceanic islands, such as Darwin’s finches from the Galapagos islands (16), anole lizards from the Caribbean islands (9), Hawaiian Drosophilids (17), and Hawaiian silverswords (18), to name a few.Recent advances in genome sequencing and analyses have greatly improved our ability to examine the genetics of speciation and adaptive radiation. By examining sequences of multiple individuals from their natural environment, it has become possible to “catch in the act” the speciation processes between incipient lineages (19). Genomic studies of early stage speciation show that differentiation accumulates in genomic regions that restrict the homogenizing effects of gene flow between incipient species (20). The number, size, and distribution of these genomic regions can shed light on evolutionary factors involved in speciation (19). Regions of high genomic differentiation can also form from evolutionary factors unrelated to speciation, such as linkage associated with recurrent background selection or selective sweeps on shared genomic features (21, 22).Genomic studies of lineages undergoing rapid ecological diversification have begun to reveal the evolutionary mechanisms underlying adaptive radiations. Importantly, these studies highlight the pivotal role of hybridization between populations and the consequent exchange of adaptive alleles that facilitates rapid speciation and the colonization of diverse niches (2325). Most genomic studies of adaptive radiation involve animal systems, however, in particular, birds and fishes. In plants, genomic studies of adaptive radiation are sparse (2628), and all examine continent-wide radiations. There are no genomics studies of plant adaptive radiations in geographically restricted systems such as remote islands. Because the eco-evolutionary scenarios associated with adaptive radiations are diverse (5, 29), whether commonalities identified in adaptive radiations in animals (23, 30) are applicable to plants is an open question. For example, the genetic architecture of animal adaptive radiations typically involves differentiation at a small number of genomic regions (3133). In contrast, the limited insights available for plants suggest a more complex genetic architecture (26).We investigated the evolutionary genomics of adaptive radiation in Metrosideros Banks ex Gaertn. (Myrtaceae) across the Hawaiian Islands. Hawaiian Metrosideros is a landscape-dominant, hypervariable, and highly dispersible group of long-lived (possibly >650 y) (34) woody taxa that are nonrandomly distributed across Hawaii’s heterogeneous landscape, including cooled lava flows, wet forests and bogs, subalpine zones, and riparian zones (35, 36). About 25 taxa or morphotypes are distinguished by vegetative characters ranging from prostate plants that flower a few centimeters above ground to 30-m-tall trees, and leaves range dramatically in size, shape, pubescence, color, and rugosity (35, 37, 38); a majority of these forms are intraspecific varieties or races (provisional varieties) of the abundant species, Metrosideros polymorpha (35, 36, 38). Variation in leaf mass per area within the four Metrosideros taxa on Hawaii Island alone matches that observed for woody species globally (39). Common garden experiments (38, 4044) and parent–offspring analysis (45) demonstrate heritability of taxon-diagnostic vegetative traits, indicating that taxa are distinct genetic groups and not the result of phenotypic plasticity. Metrosideros taxa display evidence of local adaptation to contrasting environments (46, 47), suggesting ecological divergent selection is responsible for diversification within the group (48). This diversification, which spans the past ∼3.1 to 3.9 million years (49, 50), has occurred despite the group’s high capacity for gene flow by way of showy bird-pollinated flowers and tiny wind-dispersed seeds (36, 51). Lastly, the presence of partial reproductive isolating barriers between taxa is consistent with the early stages of speciation (52). Here, we generated several genomic resources for Hawaiian Metrosideros and used these in population genomics analyses to gain deeper insights into the genomic architecture and evolutionary processes underlying this island adaptive radiation.
Keywords:Metrosideros   adaptive radiation   ecological speciation   incipient speciation   speciation genomics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号