首页 | 本学科首页   官方微博 | 高级检索  
     

基于大数据的前列腺癌生物信息学分析
引用本文:李志标,唐福才,卢泽潮,黄伟娜,何朝辉. 基于大数据的前列腺癌生物信息学分析[J]. 中山大学学报(医学科学版), 2019, 40(6): 857
作者姓名:李志标  唐福才  卢泽潮  黄伟娜  何朝辉
作者单位:1.广州医科大学第三临床学院,广东广州,511436;2.中山大学附属第八医院泌尿外科,广东深圳,518033;3.广州医科大学第一临床学院,广东广州,511436
基金项目:广州医科大学第三临床学院2018-2019年度大学生科研项目立项资助重点项目(2018A003)
摘    要:【目的】利用生物信息学的方法,对GEO和TCGA两个基因组学数据库进行分析,探究与前列腺癌相关的差异基因及相关的调控网络。【方法】综合GEO数据库的前列腺癌基因表达芯片数据(GSE46602、GSE55945)和TCGA数据库的RNA-seq数据,利用GEO2R及R语言的edgeR包进行基因差异分析,获得共同的显著差异基因,结合R语言的clusterProfiler包进行GO功能分析及KEGG通路分析,同时利用string网站进行蛋白互作网络分析,筛选出前列腺癌中调节蛋白表达量的关键基因,再结合TCGA临床随访数据分析关键节点基因的临床预后价值。【结果】获得共同差异基因共278个,其中表达上调100个,表达下调178个,它们与上皮细胞的调节增殖、含苯化合物的代谢过程等功能以及谷胱甘肽代谢和粘着斑等信号通路密切相关。蛋白互作网络分析结果得出3个重点蛋白表达模块以及12个关键节点基因。在这些关键基因中,EDN3、EDNRB和AMACR与前列腺癌患者的生存率密切相关。【结论】通过对前列腺癌基因芯片和RNA-seq数据的生物信息学分析,我们发现EDN3、EDNRB与AMACR很可能在前列腺癌的发生发展过程中发挥重要作用。

关 键 词:前列腺癌  生物信息学  GEO  TCGA  差异基因  
收稿时间:2019-06-13

Bioinformatics Analysis of Prostatic Carcinoma Via Big-Data
LI Zhi-biao,TANG Fu-cai,LU Ze-chao,HUANG Wei-na,HE Zhao-hui. Bioinformatics Analysis of Prostatic Carcinoma Via Big-Data[J]. Journal of Sun Yatsen University(Medical Sciences), 2019, 40(6): 857
Authors:LI Zhi-biao  TANG Fu-cai  LU Ze-chao  HUANG Wei-na  HE Zhao-hui
Affiliation:1. The Third Clinical College of Guangzhou Medical University,Guangzhou 511436,China;2. Department of Urology, The Eighth Affiliated Hospital,Sun Yat-sen University,Shenzhen,518033,China;3. The First Clinical College of Guangzhou Medical University,Guangzhou,511436,China
Abstract:【Objective】 The two databases,GEO(gene expression omnibus,GEO)and TCGA(the cancer genome alas ,TCGA),were analyzed using bioinformatics methods to screen differentially expressed genes associated and their related regulatory networks in prostate carcinoma. 【Methods】 The prostate carcinoma gene expression chip data(GSE46602 ,GSE55945) downloaded from the GEO database were integrated into the RNA- seq data of the TCGA database. And the differentially expressed genes analysis was performed using GEO2R and the edgeR package of R software to extract common significant differentially expressed genes. The clusterProfiler package of R software was used to enrich the GO(gene ontology ,GO)function enrichment analysis and KEGG(kyoto encyclopedia of genes and genomes, KEGG)pathway analysis. Differentially expressed genes were further constructed into a protein-protein interaction(PPI) network to screen out key genes for regulatory protein expression in prostate carcinoma. Gene analysis results were combined with TCGA clinical follow-up data to analyze the clinical prognostic value of key node genes. 【Results】A total of 278 significant differentially expressed genes were extracted,of which 178 genes were down- regulated and 100 genes were up-regulated. These genes were closely associated with the function and pathway enrichment such as the regulation of proliferation of epithelial cells,metabolism of benzene- containing compounds,the glutathione metabolism,and focal adhesion. The protein-protein interaction network analysis revealed three key protein expression modules and 12 key node genes. Among these key genes,EDN3(endothelin-3),EDNRB(endothelin receptor B)and AMACR(alpha-methylacyl- coa racemase)were closely related to the survival rate of prostate cancer patients. 【Conclusion】Through bioinformatics analysis of gene chip and RNA-seq data in prostate carcinoma,we found that EDN3,EDNRB and AMACR may play an important role in the occurrence and development of prostate carcinoma.
Keywords:prostatic carcinoma  bioinformatics analysis  GEO  TCGA  differential gene  
点击此处可从《中山大学学报(医学科学版)》浏览原始摘要信息
点击此处可从《中山大学学报(医学科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号