首页 | 本学科首页   官方微博 | 高级检索  
     

中国2008-2016年手足口病月发病率时间序列分析及预测模型
引用本文:熊昱阳, 任静朝, 段广才. 中国2008-2016年手足口病月发病率时间序列分析及预测模型[J]. 中华疾病控制杂志, 2019, 23(11): 1394-1398. doi: 10.16462/j.cnki.zhjbkz.2019.11.019
作者姓名:熊昱阳  任静朝  段广才
作者单位:1.453003 新乡, 新乡医学院公共卫生学院;;2.450001 郑州, 郑州大学公共卫生学院
基金项目:国家自然科学基金81573205
摘    要: 目的  通过时间序列分析我国手足口病(hand-foot-mouth disease,HFMD)的发病趋势并构建时间序列预测模型,为制定防控策略提供科学依据。 方法  从公共卫生科学数据中心收集2008-2016年我国HFMD月发病数据,使用Excel 2007建立发病率数据库并进行图表绘制,通过SAS 9.1拟合自回归综合移动模型(autoregressive integrated moving average model,ARIMA model)。以2008年1月-2015年12月HFMD月发病率作为测试集构建时间序列模型,2016年发病率数据作为验证集检验预测效果,做出模型评价,利用该模型对2017年HFMD发病率做出预测。以P<0.05为差异有统计学意义。 结果  最终构建ARIMA((12),2,0)疏系数模型,残差为白噪声序列,实际值均落在预测值95% CI内,模型回归系数有统计学意义,预测值与实际值总体吻合程度良好,均方误差平方根为3.6490,平均绝对误差=2.62,平均绝对百分比误差=28.24%。 结论  疏系数模型可较好的拟合我国HFMD发病率的时间序列趋势,对HFMD防控策略的制定有指导意义。

关 键 词:手足口病   疏系数模型   预测
收稿时间:2019-07-02
修稿时间:2019-09-12

Application of the time series model in prediction of incidence of hand-foot-mouth disease from 2008 to 2016 in China
XIONG Yu-yang, REN Jing-chao, DUAN Guang-cai. Application of the time series model in prediction of incidence of hand-foot-mouth disease from 2008 to 2016 in China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(11): 1394-1398. doi: 10.16462/j.cnki.zhjbkz.2019.11.019
Authors:XIONG Yu-yang  REN Jing-chao  DUAN Guang-cai
Affiliation:1. School of Public Health of Xinxiang Medical University, Xinxiang 453003, China;;2. College of public health, Zhengzhou university, Zhengzhou 450001, China
Abstract:  Objective  To predict the monthly incidence of hand-foot-mouth disease (HFMD) in China by using autoregressive integrated moving average (ARIMA) model and provide evidence for prevention and control of HFMD.  Methods  The monthly incidence data of HFMD in China from 2008 to 2016 were collected from the Public Health Science data Center. The incidence database was established by Excel 2007 and graphed. SAS 9.1 was used to construct the ARIMA model, based on the data of the monthly reported incidence of HFMD in China from January 2008 to December 2015, and then the data in 2016 were used to verify the predicted results. The monthly incidence in 2017 was predicted in the same way.The difference was statistically significant when P<0.05.  Result  The model predicting monthly incidence of HFMD in China is ARIMA ((12), 2, 0) sparse coefficient and residuals is white noise. The parameters were as follows: moted mean squared error=3.6490, mean absolute error=2.62, mean absolute percentage error=28.24%.  Conclusion  The sparse coefficient model could well simulate the trend of HFMD case in time series, which has good reference of early warning and prevention of HFMD.
Keywords:HFMD  ARIMA  Prediction
本文献已被 万方数据 等数据库收录!
点击此处可从《中华疾病控制杂志》浏览原始摘要信息
点击此处可从《中华疾病控制杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号