首页 | 本学科首页   官方微博 | 高级检索  
     

ARIMA模型和BP神经网络模型在甘肃省结核病发病率预测中的应用
引用本文:杨文姣, 肖俊玲, 丁国武. ARIMA模型和BP神经网络模型在甘肃省结核病发病率预测中的应用[J]. 中华疾病控制杂志, 2019, 23(6): 728-732. doi: 10.16462/j.cnki.zhjbkz.2019.06.021
作者姓名:杨文姣  肖俊玲  丁国武
作者单位:1.730000 兰州, 兰州大学公共卫生学院, 社会医学与卫生事业管理研究所;;2.730000 兰州, 兰州大学公共卫生学院, 劳动卫生与环境卫生研究所
摘    要: 目的  探讨自回归滑动平均混合模型(autoregressive integrated moving average,ARIMA)与误差逆传播((back propagation,BP)神经网络模型在甘肃省结核病发病率预测中的预测效果,选取合适的模型预测发病趋势。 方法  以甘肃省1997-2017年结核病数据为基础,建立ARIMA时间序列模型和BP神经网络模型分别预测2018-2019年的发病率,并比较两种模型的预测精度和建模效果。 结果  对于甘肃省2018年和2019年结核病发病率,ARIMA时间序列模型预测结果为55.1075,54.5373,MSE=92.24,MAE=7.5313,MAPE=9.26%;BP神经网络模型预测结果为62.0132,73.4460,MSE=9.6575,MAE=1.1449,MAPE=1.68%。 结论  BP神经网络模型对甘肃省结核病发病率的预测效果更佳,预测得2018-2019年甘肃省结核病发病率将呈小幅上升趋势。

关 键 词:结核病   ARIMA时间序列   BP神经网络   预测
收稿时间:2018-11-05
修稿时间:2019-03-01

Application of ARIMA model and BP neural network model in prediction of tuberculosis incidence in Gansu Province
YANG Wen-Jiao, XIAO Jun-Ling, DING Guo-wu. Application of ARIMA model and BP neural network model in prediction of tuberculosis incidence in Gansu Province[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2019, 23(6): 728-732. doi: 10.16462/j.cnki.zhjbkz.2019.06.021
Authors:YANG Wen-Jiao  XIAO Jun-Ling  DING Guo-wu
Affiliation:1. Institute of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou 730000, China;;2. Institute of Labor and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
Abstract:  Objective  To investigate the predictive effect of autoregressive integrated moving average (ARIMA) model and back propagation neural network (BPNN)in the prediction of tuberculosis incidence in Gansu Province, and to select appropriate models to predict the incidence.  Methods  Based on the data of tuberculosis in Gansu Province from 1997 to 2017, the ARIMA time series model and BP neural network model were established to predict the incidence from 2018 to 2019, and the prediction accuracy and modeling effect of the two models were compared.  Results  For the incidence of tuberculosis in Gansu Province in 2018 and 2019, the ARIMA model predicted results were 55.1075, 54.5373, MSE=92.24, MAE=7.5313, MAPE=9.26%; BP neural network model predicted results were 62.0132, 73.4460, MSE=9.6575, MAE=1.1449, MAPE=1.68%.  Conclusions  The BP neural network model has a better predictive effect on the incidence of tuberculosis in Gansu Province, and it shows that the incidence of tuberculosis in Gansu Province will increase slightly from 2018 to 2019.
Keywords:Tuberculosis  ARIMA time series  BP neural network  prediction
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《中华疾病控制杂志》浏览原始摘要信息
点击此处可从《中华疾病控制杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号