首页 | 本学科首页   官方微博 | 高级检索  
     


Examination of spinal cord tissue architecture with magnetic resonance diffusion tensor imaging
Authors:Stephan E. Maier
Affiliation:1. Radiology (MRI), Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, 02115, Boston, MA
Abstract:Magnetic resonance diffusion tensor imaging yields images with detailed information about tissue water diffusion. Diffusion-weighted imaging of the human spinal cord requires dedicated magnetic resonance pulse sequences that minimize the effects of subject motion, distortions, and artifacts from lipids and CSF flow. These problems are accentuated by the anatomic properties of the spinal cord (i.e., a small crosssectional dimension and a location deep inside the body). The diffusion tensor (a simplified model for complex diffusion in structured tissues) can be estimated for each image pixel by measuring diffusion along a minimum of six independent directions. It can then be used to derive mean diffusivity, diffusion anisotropy, and the dominant orientation of the diffusion process. The observation that diffusion along nerve fibers is much higher than across fibers, allows a noninvasive reconstruction of the spinal cord nerve fiber architecture. This includes not only the primary cranio-caudad running connections, but also secondary, transverse running collateral fibers. With fiber tracking, the pixel-based diffusion information can be integrated to obtain a three-dimensional view of axonal fiber connectivity between the spinal cord and different brain regions. The development and myelination during infancy and early childhood is reflected in a gradual decrease of mean diffusivity and increase in anisotropy. There are several diseases that lead to either local or general changes in spinal cord water diffusion. For therapy research, such changes can be studied noninvasively and repeatedly in animal models.
Keywords:
本文献已被 ScienceDirect SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号