首页 | 本学科首页   官方微博 | 高级检索  
     


Tau binding to microtubules does not directly affect microtubule-based vesicle motility
Authors:Morfini Gerardo  Pigino Gustavo  Mizuno Naoko  Kikkawa Masahide  Brady Scott T
Affiliation:Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA.
Abstract:Tau protein is a major microtubule (MT)-associated brain protein enriched in axons. Multiple functional roles are proposed for tau protein, including MT stabilization, generation of cell processes, and targeting of phosphotransferases to MTs. Recently, experiments involving exogenous tau expression in cultured cells suggested a role for tau as a regulator of kinesin-1-based motility. Tau was proposed to inhibit attachment of kinesin-1 to MTs by competing for the kinesin-1 binding site. In this work, we evaluated effects of tau on fast axonal transport (FAT) by using vesicle motility assays in isolated squid axoplasm. Effects of recombinant tau constructs on both kinesin-1 and cytoplasmic dynein-dependent FAT rates were evaluated by video microscopy. Exogenous tau binding to endogenous squid MTs was evidenced by a dramatic change in individual MT morphologies. However, perfusion of tau at concentrations approximately 20-fold higher than physiological levels showed no effect on FAT. In contrast, perfusion of a cytoplasmic dynein-derived peptide that competes with kinesin-1 and cytoplasmic dynein binding to MTs in vitro rapidly inhibited FAT in both directions. Taken together, our results indicate that binding of tau to MTs does not directly affect kinesin-1- or cytoplasmic dynein-based motilities. In contrast, our results provide further evidence indicating that the functional binding sites for kinesin-1 and cytoplasmic dynein on MTs overlap.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号