首页 | 本学科首页   官方微博 | 高级检索  
     


Goblet cell LRRC26 regulates BK channel activation and protects against colitis in mice
Authors:Vivian Gonzalez-Perez  Pedro L. Martinez-Espinosa  Monica Sala-Rabanal  Nikhil Bharadwaj  Xiao-Ming Xia  Albert C. Chen  David Alvarado  Jenny K. Gustafsson  Hongzhen Hu  Matthew A. Ciorba  Christopher J. Lingle
Abstract:Goblet cells (GCs) are specialized cells of the intestinal epithelium contributing critically to mucosal homeostasis. One of the functions of GCs is to produce and secrete MUC2, the mucin that forms the scaffold of the intestinal mucus layer coating the epithelium and separates the luminal pathogens and commensal microbiota from the host tissues. Although a variety of ion channels and transporters are thought to impact on MUC2 secretion, the specific cellular mechanisms that regulate GC function remain incompletely understood. Previously, we demonstrated that leucine-rich repeat-containing protein 26 (LRRC26), a known regulatory subunit of the Ca2+-and voltage-activated K+ channel (BK channel), localizes specifically to secretory cells within the intestinal tract. Here, utilizing a mouse model in which MUC2 is fluorescently tagged, thereby allowing visualization of single GCs in intact colonic crypts, we show that murine colonic GCs have functional LRRC26-associated BK channels. In the absence of LRRC26, BK channels are present in GCs, but are not activated at physiological conditions. In contrast, all tested MUC2 cells completely lacked BK channels. Moreover, LRRC26-associated BK channels underlie the BK channel contribution to the resting transepithelial current across mouse distal colonic mucosa. Genetic ablation of either LRRC26 or BK pore-forming α-subunit in mice results in a dramatically enhanced susceptibility to colitis induced by dextran sodium sulfate. These results demonstrate that normal potassium flux through LRRC26-associated BK channels in GCs has protective effects against colitis in mice.

The colonic epithelium is composed of a single layer of heterogeneous cells, covered by mucus, that separate the luminal contents from host tissues. Acting both in concert and individually, the diverse cells comprising the epithelial layer play the functions of protection (1), sensation (2, 3), transport of substances (4, 5), and repair (6). Colonic epithelial cells belong to three lineages: Absorptive enterocytes, enteroendocrine cells, and goblet cells (GCs). The colonic epithelium is morphologically organized into repeating units called crypts of Lieberkühn, where stem cells located at the base of the crypts divide and successively differentiate into the mature lineages as they migrate toward the crypt surface (7). Many of the key specialized functions of epithelial cells are, in part, defined by proteins involved in ion transport, located either on their luminal or basolateral membrane. Thus, among different gastrointestinal epithelial cells, ion channels, carriers, exchangers, and pumps work in concert to define a variety of essential functions: 1) Solute and electrolyte absorption and secretion in absorptive enterocytes (reviewed in refs. 5 and 8); 2) environment sensation and serotonin secretion by enteroendocrine cells (2, 9); and 3) mucus secretion by GCs and subsequent mucus maturation into the protective layer covering the epithelial surface (1012). Despite this progress, ionic transport in GCs and its implications in GC physiology is a topic that remains poorly understood. Here, we address the role of the Ca2+- and voltage-activated K+ channel (BK channel) in GCs.GCs play two primary roles: One related to the maintenance of the mucosal barrier (reviewed in refs. 1 and 13) and one related with the mucosal immune homeostasis (reviewed in refs. 14 and 15). The role of GCs in barrier maintenance consists in generation of the mucus layer lining the intestinal lumen. One way GCs carry out this role is by secreting MUC2, the gel-forming mucin that forms the scaffold of the mucus layer separating luminal pathogens and commensal microbiota from the epithelial surface (11, 12, 15, 16). This separation is critical, as has been demonstrated in both animal models and humans: Mouse models with deficient mucus layer generation develop spontaneous colitis (16, 17), whereas a more penetrable mucus layer has been observed in patients with ulcerative colitis (UC), a form of human inflammatory bowel disease (IBD) (18, 19). The constant replenishment of the mucus layer involves MUC2 exocytosis from GCs, and subsequent maturation (hydration and expansion) of the secreted MUC2 to form the gel-like mucus coating the epithelium (15). Both exocytosis and maturation of MUC2 are highly dependent on anion and K+ transport (1012, 20). It has been proposed that mucin exocytosis in colon requires activities of the Na+/K+/2Cl cotransporter (NKCC1) (20, 21), and also anion and K+ channels whose identities are still unclear (20). It is also not clearly known whether specific ionic conductances are intrinsic to GCs or are located in the surrounding absorptive enterocytes. Although several types of K+ channels—including KCa3.1, Kv7.1, and BK channels—have been found in colonic epithelial cells (2227), to what extent any of those K+ channels are specifically associated with GCs or critical to their function remains unclear. To date, most functional studies about colonic K+ channels have focused on their roles in electrolyte and fluid secretion/absorption of the whole colon, whereas the cellular events relating K+ channels to specific roles in GC function are still poorly understood.Among colonic epithelial K+ channels, the BK channel (also known as KCa1.1), the Ca2+- and voltage-activated K+ channel of high conductance, has been proposed to be the main component of colonic K+ secretion into the lumen (2830). BK channels are homotetramers of the pore-forming BKα subunit, but can also contain tissue-specific regulatory subunits that critically define the functional properties of the channel (31). BK channels composed exclusively of the pore-forming BKα subunit are unlikely to be activated at the physiological conditions of epithelial cells and, as a consequence, the molecular properties of colonic BK channels that would allow them to contribute to colonic ion transport remain unclear. Recently, we established that the leucine-rich repeat-containing protein 26 (LRRC26), a BK regulatory γ-subunit, is specifically expressed in secretory epithelial cells, including GCs of the gastrointestinal tract (32). When LRRC26 is present in a BK channel complex, the resulting channel activates near normal resting physiological conditions, even in the absence of any elevation of intracellular Ca2+ (33).In the present study, we have specifically probed the role of BK channels in cells of the colonic epithelium and examined the impact of deletions of either the BKα subunit or LRRC26 on colonic function. Here, through recordings from identified GCs in intact colonic crypts, we show that LRRC26-associated BK channels contribute the major K+ current at low intracellular Ca2+ (∼250 nM) in mouse colonic GCs. Furthermore, the LRRC26-containing BK channels are activated near −40 mV, even in the absence of intracellular Ca2+. In contrast, in identified GCs from Lrrc26−/− mice, BK current is present, but it is only activated at membrane potentials unlikely to ever occur physiologically. Surprisingly, all colonic epithelial MUC2 cells sampled completely lack functional BK channels. To establish that the LRRC26-containing BK channels contribute to normal K+ fluxes in intact colon tissue, we show that the transepithelial current across distal colon at rest has a component dependent on LRRC26-associated BK channels, which is absent when either BKα or LRRC26 is genetically deleted. Moreover, the genetic ablation of either LRRC26 or BK channel results in a dramatically enhanced susceptibility to colitis induced by dextran sodium sulfate (DSS). Overall, our results suggest that normal potassium flux through LRRC26-associated BK channels in GCs has a protective role against development of colitis.
Keywords:LRRC26   Ca2+-activated K+ channels   epithelial cells   DSS-induced colitis   inflammatory bowel disease
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号