Wear Resistance Improvement of Cemented Tungsten Carbide Deep-Hole Drills after Ion Implantation |
| |
Authors: | Dmitrij Morozow,Marek Barlak,Zbigniew Werner,Marcin Pisarek,Piotr Konarski,Jerzy Zagó rski,Mirosł aw Rucki,Leszek Chał ko,Marek Ł agodziń ski,Jakub Narojczyk,Zbigniew Krzysiak,Jacek Caban |
| |
Abstract: | The paper is dedicated to the life prolongation of the tools designed for deep-hole drilling. Among available methods, an ion implantation process was used to improve the durability of tungsten carbide (WC)-Co guide pads. Nitrogen fluencies of 3 × 1017 cm−2, 4 × 1017 cm−2 and 5 × 1017 cm−2 were applied, and scanning electron microscope (SEM) observations, energy dispersive spectroscopy (EDS) analyses, X-ray photoelectron spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) measurements were performed for both nonimplanted and implanted tools. The durability tests of nonimplanted and the modified tools were performed in industrial conditions. The durability of implanted guide pads was above 2.5 times greater than nonimplanted ones in the best case, presumably due to the presence of a carbon-rich layer and extremely hard tungsten nitrides. The achieved effect may be attributed to the dissociation of tungsten carbide phase and to the lubrication effect. The latter was due to the presence of pure carbon layer with a thickness of a few dozen nanometers. Notably, this layer was formed at a temperature of 200 °C, much smaller than in previously reported research, which makes the findings even more valuable from economic and environmental perspectives. |
| |
Keywords: | deep-hole drilling tools guide pads ion implantation cemented tungsten carbide |
|
|