首页 | 本学科首页   官方微博 | 高级检索  
     


Microfluidic Cell Separation by 2-dimensional Dielectrophoresis
Authors:Giovanni De Gasperis  Jun Yang  Frederick F. Becker  Peter R. C. Gascoyne  Xiao-Bo Wang
Affiliation:(1) Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Box 89, 1515 Holcombe Boulevard, Houston, TX 77030, USA
Abstract:We describe a microfluidic device for separating cells according to their dielectric properties by combining 2-dimensional dielectrophoretic forces with field-flow-fractionation. The device comprises a thin chamber in which a travelling-wave electrical field is generated by a planar, multilayer microelectrode array at the bottom. Under the balance of gravitational and dielectrophoretic levitation forces, cells introduced into the device are positioned at different equilibrium heights in a velocity profile established inside the chamber, and thereby transported at different velocities by the fluid. Simultaneously, cells are subjected to a horizontal travelling-wave dielectrophoretic force that deflects them across the flow stream. The 2-dimensional dielectrophoretic forces acting on cells and the associated velocities in the fluid-flow and travelling-field directions depend sensitively on cell dielectric properties. The responses of cultured MDA-435 human breast cancer, HL-60 human leukemia and DS19 murine erythroleukemia cells, and of peripheral blood mononuclear (PBMN) cells were studied as functions of the frequency and voltage of the applied electric signals, and of the fluid flow rate. Significant differences were observed between the responses of different cell types. Cell separation was demonstrated by the differential redistribution of MDA-435 and PBMN cells as they flowed through the device. The device can be readily integrated with other microfluidic components for microscale sample preparation and analysis.
Keywords:cell sorting  travelling wave dielectrophoresis  filed-flow-fractionation  computer microvision
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号