Glutamate excitotoxicity attenuates insulin-like growth factor-I prosurvival signaling |
| |
Authors: | Garcia-Galloway E Arango C Pons S Torres-Aleman I |
| |
Affiliation: | Laboratory of Neuroendocrinology, Cajal Institute, CSIC, Avda. Dr. Arce 37. 28002 Madrid, Spain. |
| |
Abstract: | Recent evidence suggests that impaired insulin/insulin-like growth factor I (IGF-I) input may be associated to neurodegeneration. Several major neurodegenerative diseases involve excitotoxic cell injury whereby excess glutamate signaling leads to neuronal death. Recently it was shown that glutamate inactivates Akt, a serine-kinase crucially involved in the prosurvival actions of IGF-I. We now report that excitotoxic doses of glutamate antagonize Akt activation by IGF-I and inhibit the neuroprotective effects of this growth factor on cultured neurons. Glutamate induces loss of sensitivity to IGF-I by phosphorylating the IGF-I receptor docking protein insulin-receptor-substrate (IRS)-1 in Ser(307) through a pathway involving activation of PKA and PKC in a hierarchical fashion. Administration of Ro320432, a selective PKC inhibitor, abrogates the inhibitory effects of glutamate on IGF-I-induced Akt activation in vitro and in vivo and is sufficient to block the neurotoxic action of glutamate on cultured neurons. Notably, administration of Ro320432 after ischemic insult, a major form of excitotoxic injury in vivo, results in a marked decrease ( approximately 50%) in infarct size. Therefore, uncoupling of IGF-I signaling by glutamate may constitute an additional route contributing to excitotoxic neuronal injury. Further work should determine the potential use of PKC inhibitors as a novel therapeutic strategy in ischemia and other excitotoxic insults. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|