首页 | 本学科首页   官方微博 | 高级检索  
     


Annexin 1 (lipocortin 1) mediates the glucocorticoid inhibition of cyclic adenosine 3',5'-monophosphate-stimulated prolactin secretion
Authors:Taylor A D  Philip J G  John C D  Cover P O  Morris J F  Flower R J  Buckingham J C
Affiliation:Department of Neuroendocrinology, Imperial College School of Medicine, Charing Cross Hospital, London, United Kingdom.
Abstract:Our previous studies have identified a role for annexin 1 (also called lipocortin 1) in the regulatory actions of glucocorticoids (GCs) on the release of PRL from the rat anterior pituitary gland. In the present study we used antisense and immunoneutralization strategies to extend this work. Exposure of rat anterior pituitary tissue to corticosterone (1 nM) or dexamethasone (100 nM) in vitro induced 1) de novo annexin 1 synthesis and 2) translocation of the protein from intracellular to pericellular sites. Both responses were prevented by the inclusion in the medium of an annexin 1 antisense oligodeoxynucleotide (ODN; 50 nM), but not by the corresponding sense and scrambled ODN sequences. Unlike the GCs, 17beta-estradiol, testosterone, and aldosterone (1 nM) had no effect on either the synthesis or the cellular disposition of annexin 1; moreover, none of the steroids or ODNs tested influenced the expression of annexin 5, a protein closely related to annexin 1. The increases in PRL release induced in vitro by drugs that signal via cAMP/protein kinase A [vasoactive intestinal polypeptide (10 nM), forskolin (100 microM), 8-bromo-cAMP (0.1 microM)] or phospholipase C (TRH, 10 nM) were attenuated by preincubation of the pituitary tissue with either corticosterone (1 nM) or dexamethasone (100 nM). The inhibitory actions of the steroids on the secretory responses to vasoactive intestinal polypeptide, forskolin, and 8-bromo-cAMP were specifically quenched by inclusion in the medium of the annexin 1 antisense ODN (50 nM) or a neutralizing antiannexin 1 monoclonal antibody (antiannexin 1 mAb, diluted 1:15,000). By contrast, the ability of the GCs to suppress the TRH-induced increase in PRL release was unaffected by both the annexin 1 antisense ODN and the antiannexin 1 mAb. In vivo, interleukin-1beta (10 ng, intracerebroventricularly) produced a significant increase in the serum PRL concentration (P < 0.01), which was prevented by pretreatment of the rats with corticosterone (100 microg/100 g BW, sc). The inhibitory actions of the steroid were specifically abrogated by peripheral administration of an antiannexin 1 antiserum (200 microl, sc); by contrast, when the antiserum was given centrally (3 microl, intracerebroventricularly), it was without effect. These results support our premise that annexin contributes to the regulatory actions of GCs on PRL secretion and suggest that it acts at point distal to the formation of cAMP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号