Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors |
| |
Authors: | Roseti Cristina Martinello Katiuscia Fucile Sergio Piccari Vanessa Mascia Addolorata Di Gennaro Giancarlo Quarato Pier Paolo Manfredi Mario Esposito Vincenzo Cantore Gianpaolo Arcella Antonella Simonato Michele Fredholm Bertil B Limatola Cristina Miledi Ricardo Eusebi Fabrizio |
| |
Affiliation: | Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza di Biologia e Medicina Molecolare, Università di Roma La Sapienza, Piazzale A. Moro 5, I-00185 Rome, Italy. |
| |
Abstract: | We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. |
| |
Keywords: | A2A receptor A3 receptor microtransplantation into Xenopus oocyte temporal lobe epilepsy |
本文献已被 PubMed 等数据库收录! |
|