首页 | 本学科首页   官方微博 | 高级检索  
检索        


Ginsenoside Rg(3) decelerates hERG K(+) channel deactivation through Ser631 residue interaction
Authors:Choi Sun-Hye  Shin Tae-Joon  Hwang Sung-Hee  Lee Byung-Hwan  Kang Jiyeon  Kim Hyeon-Joong  Jo Su-Hyun  Choe Han  Nah Seung-Yeol
Institution:Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, South Korea.
Abstract:The human ether-a-go-go-related gene (hERG) cardiac K(+) channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to have cardio-protective effects. However, little is known about the molecular mechanisms of how ginsenosides, the active ingredients in Panax ginseng, interact with hERG K(+) channel proteins. In the present study, we first examined the effects of various ginsenosides on hERG K(+) channel activity by expressing human α subunits in Xenopus oocytes. Among them ginsenoside Rg(3) (Rg(3)) most potently enhanced outward I(hERG) and peak I(tail). Rg(3) induced a large persistent deactivating-tail current (I(deactivating-tail)) and profoundly decelerated deactivating current decay in both concentration- and voltage-dependent manners. The EC(50) for steady-state I(hERG), peak I(tail), and persistent I(deactivating-tail) was 0.41±0.05, 0.61±0.11, and 0.36±0.04μM, respectively. Rg(3) actions were blocked by bepridil, a hERG K(+) channel antagonist. Site-directed mutation of S631, which is located at the channel pore entryway, to S631C in hERG K(+) channel abolished Rg(3) actions on hERG K(+) channels. These results indicate that S631 residue of hERG K(+) channel plays an important role in Rg(3)-mediated induction of a persistent I(deactivating-tail) and in a deceleration of hERG K(+) channel deactivation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号