首页 | 本学科首页   官方微博 | 高级检索  
检索        


Sulforaphane and its methylcarbonyl analogs inhibit the LPS-stimulated inflammatory response in human monocytes through modulating cytokine production,suppressing chemotactic migration and phagocytosis in a NF-κB- and MAPK-dependent manner
Institution:1. Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore;2. SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, Republic of Singapore
Abstract:Sulforaphane SF; 1-isothiocyanato-4-(methylsulfinyl)-butane], an aliphatic isothiocyanate (ITC) naturally derived from cruciferous vegetables and largely known for its chemopreventive potential also appears to possess anti-inflammatory potential. In this study, structural analogs of SF {compound 1 1-isothiocyanato-4-(methylcarbonyl)-butane] and 2 1-isothiocyanato-3-(methylcarbonyl)-propane]} containing a carbonyl group in place of the sulfinyl group in SF, were evaluated for their anti-inflammatory activities. In RAW 264.7 cells, the ITCs at non-toxic concentrations caused an inhibition of NO and prostaglandin E2 (PGE2) release through suppressing expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as a reduction in matrix metalloproteinase-9 (MMP-9) expression, secretion and gelatinolytic activity. Further work performed on human monocytes isolated from blood of healthy donors revealed that the ITCs not only suppressed the expression and release of pro-inflammatory mediators IL-1β, IL-6, TNF-α and MMP-9, but also suppressed their antibody-independent phagocytic and chemotactic migratory abilities. These anti-inflammatory activities were mediated through suppression of the NF-κB and MAPK signaling pathways. In addition, the ITCs were revealed to interact with the cysteines in inhibitor of nuclear factor-κB kinase β subunit (IKKβ), which could contribute at least partly to the suppression of NF-κB signaling. In conclusion, results obtained in this study provide deeper insights into the anti-inflammatory properties of SF and its methylcarbonyl analogs and the underlying mechanisms. These compounds thus serve as promising candidates for clinical applications in controlling inflammatory conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号