首页 | 本学科首页   官方微博 | 高级检索  
检索        


In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8+ T cell response and advancement of epitope based immunotherapy for CHIKV infection
Institution:1. Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000, Alfenas, MG, Brazil;2. Institute of Chemistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000, Alfenas, MG, Brazil;3. Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema, SP, Brazil
Abstract:Chikungunya virus (CHIKV) is a mosquito-borne Alphavirus, responsible for acute febrile infection. The high morbidity and socio-economic loss associated with the recent CHIKV epidemics worldwide have raised a great public health concern and emphasize the need to study the immunological basis of CHIKV infection to control the disease. MHC-I restricted CD8+ T cell response represent one of the major anti-viral immune responses. Accordingly, it is essential to have a detailed understanding towards CHIKV specific MHC-I restricted immunogenic epitopes for anti-viral CD8+ CTL immunogenicity. In the present study, a computational approach was used to predict the conserved MHC-I epitopes for mouse haplotypes (H2-Db and H2-Dd) and some alleles of the major HLA-I supertypes (HLA-A2, -A3, -A24, -B7, -B15) of all CHIKV proteins. Further, an in-depth computational analysis was carried out to validate the selected epitopes for their nature of conservation in different global CHIKV isolates to assess their binding affinities to the appropriate site of respective MHC-I molecules and to predict anti-CHIKV CD8+ CTL immunogenicity. Our analyses resulted in fifteen highly conserved epitopes for H2-Db and H2-Dd and fifty epitopes for different HLA-I supertypes. Out of these, the MHC-I epitopes VLLPNVHTL and MTPERVTRL were found to have highest predictable CTL immunogenicities and least binding energies for H2-Db and H2-Dd, whereas, for HLA-I, the epitope FLTLFVNTL was with the highest population coverage, CTL immunogenicity and least binding energy. Hence, our study has identified MHC-I restricted epitopes that may help in the advancement of MHC-I restricted epitope based anti-CHIKV immune responses against this infection and this will be useful towards the development of epitope based anti-CHIKV immunotherapy in the future. However, further experimental investigations for cross validation and evaluation are warranted to establish the ability of epitopes to induce CD8+ T cell mediated immune responses.
Keywords:MHC-I epitope  Chikungunya virus  H2-Db  H2-Dd  HLA-I
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号