首页 | 本学科首页   官方微博 | 高级检索  
     


A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans
Authors:Mangino Massimo  Brouilette Scott  Braund Peter  Tirmizi Nighat  Vasa-Nicotera Mariuca  Thompson John R  Samani Nilesh J
Affiliation:Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
Abstract:Telomeres are repetitive sequences of variable length at the ends of chromosomes involved in maintaining their integrity. Telomere dysfunction is associated with increased risk of cancer and other age-related diseases. Telomere length is an important determinant of telomere function and has a strong genetic basis. We previously carried out a genome-wide linkage analysis of mean leukocyte telomere length, and identified a 12 cm quantitative-trait locus affecting telomere length on human chromosome 12. In the present study we confirmed linkage to this locus in an extended sample (380 families, 520 sib-pairs, maximum LOD score 4.3). Fine-mapping identified a 51 kb region of association within intron 1 of the Bicaudal-D homolog 1 (BICD1, MIM 602204) gene. The strongest association (P = 1.9 x 10(-5)) was with SNP rs2630578 where the minor allele C (frequency 0.21) was associated with telomeres that were shorter by 604 (+/-204) base pairs, equivalent to approximately 15-20 years of age-related attrition in telomere length. Subjects carrying the C allele for rs2630778 had 44% lower BICD1 mRNA levels in their leukocytes compared with GG homozygotes (P = 0.004). BICD1 is involved in Golgi-to-endoplasmic reticulum vacuolar transport. Previous studies have implicated vacuolar genes in telomere length homeostasis in yeast. Our study indicates that BICD1 plays a similar role in humans.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号