首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions
Authors:Breedveld Pauline  Zelcer Noam  Pluim Dick  Sönmezer Ozgür  Tibben Matthijs M  Beijnen Jos H  Schinkel Alfred H  van Tellingen Olaf  Borst Piet  Schellens Jan H M
Affiliation:Divisions of Experimental Therapy, Molecular Biology, Clinical Chemistry, and Medical Oncology, The Netherlands Cancer Institute, Amsterdam.
Abstract:The antifolate drug methotrexate (MTX) is transported by breast cancer resistance protein (BCRP; ABCG2) and multidrug resistance-associated protein1-4 (MRP1-4; ABCC1-4). In cancer patients, coadministration of benzimidazoles and MTX can result in profound MTX-induced toxicity coinciding with an increase in the serum concentrations of MTX and its main metabolite 7-hydroxymethotrexate. We hypothesized that benzimidazoles interfere with the clearance of MTX and/or 7-hydroxymethotrexate by inhibition of the ATP-binding cassette drug transporters BCRP and/or MRP2, two transporters known to transport MTX and located in apical membranes of epithelia involved in drug disposition. First, we investigated the mechanism of interaction between benzimidazoles (pantoprazole and omeprazole) and MTX in vitro in membrane vesicles from Sf9 cells infected with a baculovirus containing human BCRP or human MRP2 cDNA. In Sf9-BCRP vesicles, pantoprazole and omeprazole inhibited MTX transport (IC50 13 microm and 36 microm, respectively). In Sf9-MRP2 vesicles, pantoprazole did not inhibit MTX transport and at high concentrations (1 mm), it even stimulated MTX transport 1.6-fold. Secondly, we studied the transport of pantoprazole in MDCKII monolayers transfected with mouse Bcrp1 or human MRP2. Pantoprazole was actively transported by Bcrp1 but not by MRP2. Finally, the mechanism of the interaction was studied in vivo using Bcrp1-/- mice and wild-type mice. Both in wild-type mice pretreated with pantoprazole to inhibit Bcrp1 and in Bcrp1-/- mice that lack Bcrp1, the clearance of i.v. MTX was decreased significantly 1.8- to 1.9-fold compared with the clearance of i.v. MTX in wild-type mice. The conclusion is as follows: benzimidazoles differentially affect transport of MTX mediated by BCRP and MRP2. Competition for BCRP may explain the clinical interaction between MTX and benzimidazoles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号