首页 | 本学科首页   官方微博 | 高级检索  
     


Topological basis of epileptogenesis in a model of severe cortical trauma
Authors:Volman Vladislav  Sejnowski Terrence J  Bazhenov Maxim
Affiliation:Howard Hughes Medical Institute, Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, University of California, Riverside, California, USA.
Abstract:Epileptic activity often arises after a latent period following traumatic brain injury. Several factors contribute to the emergence of post-traumatic epilepsy, including disturbances to ionic homeostasis, pathological action of intrinsic and synaptic homeostatic plasticity, and remodeling of anatomical network synaptic connectivity. We simulated a large-scale, biophysically realistic computational model of cortical tissue to study the mechanisms underlying the genesis of post-traumatic paroxysmal epileptic-like activity in the deafferentation model of a severely traumatized cortical network. Post-traumatic generation of paroxysmal events did not require changes of the structural connectivity. Rather, network bursts were induced following the action of homeostatic synaptic plasticity, which selectively influenced functionally dominant groups of intact neurons with preserved inputs. This effect critically depended on the spatial density of intact neurons. Thus in the deafferentation model of post-traumatic epilepsy, a trauma-induced change in functional (rather than anatomical) connectivity might be sufficient for epileptogenesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号