首页 | 本学科首页   官方微博 | 高级检索  
     


A longitudinal HR‐pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density,cortical and trabecular microarchitecture,biomechanics, and bone turnover
Authors:Andrew J Burghardt  Galateia J Kazakia  Miki Sode  Anne E de Papp  Thomas M Link  Sharmila Majumdar
Affiliation:1. Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA;2. Joint Graduate Group in Bioengineering, University of California, San Francisco and Berkeley, San Francisco, CA, USA;3. Merck & Co., Inc., Whitehouse Station, NJ, USA
Abstract:The goal of this study was to characterize longitudinal changes in bone microarchitecture and function in women treated with an established antifracture therapeutic. In this double‐blind, placebo‐controlled pilot study, 53 early postmenopausal women with low bone density (age = 56 ± 4 years; femoral neck T‐score = ?1.5 ± 0.6) were monitored by high‐resolution peripheral quantitative computed tomography (HR‐pQCT) for 24 months following randomization to alendronate (ALN) or placebo (PBO) treatment groups. Subjects underwent annual HR‐pQCT imaging of the distal radius and tibia, dual‐energy X‐ray absorptiometry (DXA), and determination of biochemical markers of bone turnover (BSAP and uNTx). In addition to bone density and microarchitecture assessment, regional analysis, cortical porosity quantification, and micro‐finite‐element analysis were performed. After 24 months of treatment, at the distal tibia but not the radius, HR‐pQCT measures showed significant improvements over baseline in the ALN group, particularly densitometric measures in the cortical and trabecular compartments and endocortical geometry (cortical thickness and area, medullary area) (p < .05). Cortical volumetric bone mineral density (vBMD) in the tibia alone showed a significant difference between treatment groups after 24 months (p < .05); however, regionally, significant differences in Tb.vBMD, Tb.N, and Ct.Th were found for the lateral quadrant of the radius (p < .05). Spearman correlation analysis revealed that the biomechanical response to ALN in the radius and tibia was specifically associated with changes in trabecular microarchitecture (|ρ| = 0.51 to 0.80, p < .05), whereas PBO progression of bone loss was associated with a broad range of changes in density, geometry, and microarchitecture (|ρ| = 0.56 to 0.89, p < .05). Baseline cortical geometry and porosity measures best predicted ALN‐induced change in biomechanics at both sites (ρ > 0.48, p < .05). These findings suggest a more pronounced response to ALN in the tibia than in the radius, driven by trabecular and endocortical changes. © 2010 American Society for Bone and Mineral Research.
Keywords:HR‐pQCT  MICRO–  COMPUTED TOMOGRAPHY  BONE STRUCTURE  BIOMECHANICS  OSTEOPOROSIS  ALENDRONATE
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号