首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of gadobutrol,a macrocyclic,nonionic gadolinium chelate in a brain glioma model: Comparison with gadoterate meglumine and gadopentetate dimeglumine at 1.5 T,combined with an assessment of field strength dependence,specifically 1.5 versus 3 T
Authors:Ulrike I. Attenberger MD  Val M. Runge MD  John N. Morelli MD  Jonathan Williams MD  Carney B. Jackson DVM  Henrik J. Michaely MD
Affiliation:1. Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany;2. Department of Radiology, Scott & White Clinic and Hospital, Texas A&M University Health Science Center, Temple, Texas, USA;3. Veterinary Science, College of Agriculture, University of Kentucky, Lexington, Kentucky, USA
Abstract:

Purpose:

To evaluate in a rat brain glioma model intraindividual tumor enhancement at 1.5 T using gadobutrol (Gadovist), a nonionic, macrocyclic chelate currently in clinical trials in the United States, in comparison with both an ionic macrocyclic chelate, gadoterate meglumine (Dotarem), and an ionic linear chelate, gadopentetate dimeglumine (Magnevist), and to compare the degree of tumor enhancement with gadobutrol at 1.5 and 3 T.

Materials and Methods:

A total of 24 rats, divided into three groups with n = 8 animals per group, were evaluated. Animals in group 1 received injections of gadobutrol and gadopentetate dimeglumine, whereas those in group 2 received gadobutrol and gadoterate meglumine. Injections were performed in random order and separated by 24 hours. Magnetic resonance imaging (MRI) examinations were performed immediately following each contrast injection with a 1.5 T MR system. Animals in group 3 received gadobutrol injections using the same protocol but with scans performed at 1.5 and 3 T. In all examinations, T1‐weighted images were acquired precontrast, 1 minute postcontrast, and at 4 consecutive 2‐minute intervals thereafter. A contrast dose of 0.1 mmol/kg was used in all instances.

Results:

In groups 1 and 2, tumor signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio (CNR) were higher for gadobutrol compared to both other agents at each timepoint postcontrast injection. The improvement in tumor CNR with gadobutrol, depending on time, was between 12% and 40% versus gadopentetate dimeglumine, with the difference achieving statistical significance at 7 minutes. The improvement in tumor CNR with gadobutrol, depending on time, was between 15% and 27% versus gadoterate meglumine, with the difference statistically significant at 5 and 9 minutes. In group 3 the improvement in tumor SNR and CNR seen with the increase in field strength from 1.5 to 3 T for gadobutrol was statistically significant at all acquired timepoints (P < 0.002). CNR mean values ranged from 10.4 ± 2.9 to 24.6 ± 5.0 at 1.5 T and from 20.5 ± 5.9 to 47.8 ± 15.7 at 3 T depending on the timepoint postcontrast.

Conclusion:

Consistently greater tumor enhancement was noted at all measured timepoints following contrast injection with gadobutrol compared to both gadopentetate dimeglumine and gadoterate meglumine at 1.5 T. A substantial further improvement in tumor enhancement was noted using gadobutrol at 3 T. J. Magn. Reson. Imaging 2010;31:549–555. © 2010 Wiley‐Liss, Inc.
Keywords:brain tumor  gadobutrol  gadoterate meglumine  gadopentetate dimeglumine  1.5 T  3 T
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号