首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular modeling on structure-function analysis of human progesterone receptor modulators
Authors:Pal Ria  Islam Md Ataul  Hossain Tabassum  Saha Achintya
Affiliation:Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
Abstract:Considering the significance of progesterone receptor (PR) modulators, the present study is explored to envisage the biophoric signals for binding to selective PR subtype-A using ligand-based quantitative structure activity relationship (QSAR) and pharmacophore space modeling studies on nonsteroidal substituted quinoline and cyclocymopol monomethyl ether derivatives. Consensus QSAR models (Training set (Tr): n(Tr)=100, R(2) (pred)=0.702; test set (Ts): n(Ts)=30, R(2) (pred)=0.705, R(2) (m)=0.635; validation set (Vs): n(Vs)=40, R(2) (pred)=0.715, R(2) (m)=0.680) suggest that molecular topology, atomic polarizability and electronegativity, atomic mass and van der Waals volume of the ligands have influence on the presence of functional atoms (F, Cl, N and O) and consequently contribute significant relations on ligand binding affinity. Receptor independent space modeling study (Tr: n(Tr)=26, Q(2)=0.927; Ts: n(Ts)=60, R(2) (pred)=0.613, R(2) (m)=0.545; Vs: n(Vs)=84, R(2) (pred)=0.611, R(2) (m)=0.507) indicates the importance of aromatic ring, hydrogen bond donor, molecular hydrophobicity and steric influence for receptor binding. The structure-function characterization is adjudged with the receptor-based docking study, explaining the significance of the mapped molecular attributes for ligand-receptor interaction in the catalytic cleft of PR-A.
Keywords:Human progesterone receptor-A   Binding affinity   Quinoline and cyclocymopol monomethyl ether derivatives   QSAR   Pharmacophore mapping   Docking
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号