首页 | 本学科首页   官方微博 | 高级检索  
     

CT影像组学联合临床特征在预测肺腺癌EGFR突变中的价值
引用本文:李健维,杨昭,王小雷,张书海,谢宗玉. CT影像组学联合临床特征在预测肺腺癌EGFR突变中的价值[J]. 蚌埠医学院学报, 2021, 46(8): 1103-1108. DOI: 10.13898/j.cnki.issn.1000-2200.2021.08.030
作者姓名:李健维  杨昭  王小雷  张书海  谢宗玉
作者单位:1.蚌埠医学院 医学影像学院, 安徽 蚌埠 2330302.蚌埠医学院第一附属医院 放射科, 安徽 蚌埠 233004
基金项目:国家级大学生创新创业训练计划202010367017
摘    要:目的:探究CT影像组学联合临床特征对肺腺癌EGFR突变状态的预测效能.方法:对125例肺腺癌病人进行回顾性研究,分成训练组(n=74)与验证组(n=51),基于CT成像提取影像组学特征;采用支持向量机(SVM)分类器,分别构建临床模型、影像组学模型以及联合模型;受试者工作特征曲线(ROC)及曲线下面积(AUC)用于评价...

关 键 词:肺腺癌  表皮生长因子受体突变  影像组学
收稿时间:2021-02-21

Value of the CT radiomics combined with clinical features in the prediction of EGFR mutation in lung adenocarcinoma
LI Jian-wei,YANG Zhao,WANG Xiao-lei,ZHANG Shu-hai,XIE Zong-yu. Value of the CT radiomics combined with clinical features in the prediction of EGFR mutation in lung adenocarcinoma[J]. Journal of Bengbu Medical College, 2021, 46(8): 1103-1108. DOI: 10.13898/j.cnki.issn.1000-2200.2021.08.030
Authors:LI Jian-wei  YANG Zhao  WANG Xiao-lei  ZHANG Shu-hai  XIE Zong-yu
Affiliation:1.School of Medical Imaging, Bengbu Medical College, Bengbu Anhui 2330302.Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Anhui 233004, China
Abstract:ObjectiveTo explore the predictive efficacy of CT radiomics combined with clinical features in predicting EGFR mutation in lung adenocarcinoma.MethodsThe clinical data of 125 patients with lung adenocarcinoma were retrospectively analyzed, the patients were divided into the training group(n=74) and verification group(n=51).The radiomics features were extracted based on CT radiomics.The support vector machine(SVM) classifier was used to construct the clinical model, radiomics model and joint model, respectively.The receiver operating characteristic curve(ROC) and area under the curve(AUC) were used to evaluate the predictive efficacy of model.ResultsThe AUC of clinical model, radiomics model and joint model in training group were 0.749(0.653-0.843), 0.818(0.711-0.898) and 0.860(0.760-0.930), respectively.The AUC of clinical model, radiomics model and joint model in verification group were 0.753(0.612-0.863), 0.797(0.661-0.896) and 0.855(0.728-0.938), respectively.ConclusionsFor the prediction of EGFR mutation status in lung adenocarcinoma, the CT radiomics features are superior to clinical factors and CT signs.The radiomics combined with clinical factors and CT signs can further improve the prediction efficiency.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《蚌埠医学院学报》浏览原始摘要信息
点击此处可从《蚌埠医学院学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号