首页 | 本学科首页   官方微博 | 高级检索  
检索        


Inhibition of endogenous oxalate production: biochemical considerations of the roles of glycollate oxidase and lactate dehydrogenase
Authors:R Bais  A M Rofe  R A Conyers
Institution:Division of Clinical Chemistry, Institute of Medical and Veterinary Science, Adelaide, South Australia.
Abstract:1. Both the peroxisomal, flavin-linked glycollate oxidase (S)-2-hydroxy-acid oxidase; EC 1.1.3.15] and the cytosolic, nicotinamide-adenine dinucleotide (NAD)-linked lactate dehydrogenase (L-lactate dehydrogenase; EC 1.1.1.27) are thought to contribute to the formation of oxalate from its immediate precursors, glycollate and glyoxylate, but the relative contributions of each enzyme to endogenous oxalate production is not known. 2. In rat liver homogenates, 14C]oxalate production from labelled glycollate is halved and that from labelled glyoxylate is increased fourfold by the addition of either NAD or NADH. 3. In isolated rat hepatocytes, the 3-hydroxy-1H-pyrrole-2,5-dione derivatives of glycollate, which are specific inhibitors of glycollate oxidase, have a greater effect on glycollate metabolism than on glyoxylate metabolism. 4. These findings are consistent with an important role for lactate dehydrogenase in oxalate formation from glyoxylate. 5. With human and rat liver homogenates and with purified human liver glycollate oxidase and rabbit muscle lactate dehydrogenase, DL-phenyl-lactate (2 mmol/l) completely inhibits glycollate oxidase but has not effect on lactate dehydrogenase. On the other hand, the reduced form of a chemically synthesized, NAD-pyruvate adduct (1 mmol/l) almost completely inhibited lactate dehydrogenase but had no effect on glycollate oxidase. 6. Either alone or in combination, DL-phenyl-lactate and reduced NAD-pyruvate adduct reduce oxalate production from glycollate and glyoxylate in isolated rat hepatocytes, but do not abolish it completely. 7. These findings support a role for another enzyme, probably glycollate dehydrogenase (EC 1.1.99.14), in oxalate production in integrated cell metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号