首页 | 本学科首页   官方微博 | 高级检索  
检索        


Cannabinoid signaling in inhibitory autaptic hippocampal neurons
Authors:A Straiker  K Mackie
Institution:aDepartment of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405, USA
Abstract:Depolarization-induced suppression of excitation and inhibition (DSE/DSI) appears to be an important form of short-term retrograde neuronal plasticity involving endocannabinoids (eCBs), the activation of presynaptic cannabinoid CB1 receptors, and the suppression of neurotransmitter release. Using murine autaptic hippocampal cultures, we have distinguished five populations of autaptic inhibitory neurons that exhibit differential cannabinoid responses, including three temporally distinct forms of DSI. One remaining population responded to cannabinoids but did not have DSI while a fifth had neither DSI nor cannabinoid responses. Of the two chief candidate eCBs, 2-AG reversibly inhibited inhibitory post synaptic currents (IPSCs) while anandamide did so irreversibly, the latter's action inconsistent with a role as a bona fide eCB mediator of DSI. The duration of depolarization necessary to elicit the two most prominent forms of DSI (effective dose (ED-50) not, vert, similar210, not, vert, similar280 ms) was far less than for autaptic DSE. However the nearly identical concentration response for 2-AG to inhibit excitatory postsynaptic currents (EPSCs) and IPSCs indicates that this difference is not due to differential cannabinoid receptor sensitivity. Interestingly, of the two populations exhibiting prominent DSI, one had a substantially faster recovery time course both after DSI and 2-AG, this despite being cultured under identical conditions. Several enzymes have been proposed to play a role in 2-AG breakdown, presumably determining the time course of DSI: fatty acid amide hydrolase (FAAH), cyclooxygenase-2 (COX-2), monoacyl glycerol lipase (MGL), and α/β-hydrolase domains 6 and 12 (ABHD6 and ABHD12). We tested the impact on DSI duration by blockers of FAAH, COX-2, MGL and ABHD6. Notably, the population with slow DSI was regulated only by MGL, whereas the fast DSI population was regulated by both MGL and COX-2. This suggests that the faster DSI time course may occur as a result of the concerted action of multiple enzymes, which may represent a more general mechanism for regulation of the duration of different forms of DSI and DSE.
Keywords:CB1  DSI  DSE  mouse  retrograde signaling  synaptic plasticity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号