首页 | 本学科首页   官方微博 | 高级检索  
     


Food-drug interactions via human cytochrome P450 3A (CYP3A)
Authors:Fujita Ken-ichi
Affiliation:Department of Clinical Oncology, Saitama Medical School, Saitama, Japan. fujitak@saitama-med.ac.jp
Abstract:Food-drug interactions have been reported to occur in various systems in the body. The causes of these interactions are mainly divided into pharmacodynamic and pharmacokinetic processes. Among these processes, drug metabolism plays a crucial role in drug interactions. Metabolic food-drug interactions occur when a certain food alters the activity of a drug-metabolizing enzyme, leading to a modulation of the pharmacokinetics of drugs metabolized by the enzyme. A variety of interactions have been documented so far. Foods consisting of complex chemical mixtures, such as fruits, alcoholic beverages, teas, and herbs, possess the ability to inhibit or induce the activity of drug-metabolizing enzymes. According to results obtained thus far, cytochrome P450 3A4 (CYP3A4) appears to be a key enzyme in food-drug interactions. For example, interactions of grapefruit juice with felodipine and cyclosporine, red wine with cyclosporine, and St John's wort with various medicines including cyclosporine, have been demonstrated. The results indicate the requirement of dosage adjustment to maintain drug concentrations within their therapeutic windows. The CYP3A4-related interaction by food components may be related to the high level of expression of CYP3A4 in the small intestine, as well as its broad substrate specificity, as CYP3A4 is responsible for the metabolism of more than 50% of clinical pharmaceuticals. This review article summarizes the findings obtained to date concerning food-drug interactions and their clinical implications. It seems likely that more information regarding such interactions will accumulate in the future, and awareness is necessary for achieving optimal drug therapy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号