首页 | 本学科首页   官方微博 | 高级检索  
检索        


Glucuronidation of anti-HIV drug candidate bevirimat: identification of human UDP-glucuronosyltransferases and species differences.
Authors:Zhiming Wen  David E Martin  Peter Bullock  Kuo-Hsiung Lee  Philip C Smith
Institution:School of Pharmacy, CB 7360, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA.
Abstract:Bevirimat BVM, PA-457, 3-O-(3',3'-dimethylsuccinyl)-betulinic acid], a new anti-human immunodeficiency virus drug candidate, is metabolized to two monoglucuronides mono-BVMG (I) and mono-BVMG (II)] and one diglucuronide (di-BVMG) both in vivo and in vitro. UDP-glucuronosyltransferase (UGT) reaction screening, enzyme kinetics, and species differences for the glucuronidation of BVM in vitro were investigated with pooled human liver microsomes (HLMs) and human intestinal microsomes (HIMs), animal liver microsomes, and 12 recombinant human UGT isoforms. Glucuronidation of BVM with HLMs predominantly involved the formation of mono-BVMG (I) (V(max) = 61 pmol/min/mg protein, K(m) = 27 microM) and mono-BVMG (II) (V(max) = 48 pmol/min/mg protein, K(m) = 16 microM). Di-BVMG was also observed but was a minor metabolite. HIMs mainly revealed glucuronidation to form mono-BVMG (II) (V(max) = 90 pmol/min/mg of protein, K(m) = 8.3 microM). UGT1A3 predominantly formed mono-BVMG (I) (V(max) = 65 pmol/min/mg of protein, K(m) = 13 microM), whereas UGT1A4 is a less active isoform (V(max) = 1.8 pmol/min/mg of protein, K(m) = 5.6 microM). UGT2B7 was involved in the formation of both mono-BVMG (I) (V(max) = 6.1 pmol/min/mg of protein, K(m) = 6.0 microM) and mono-BVMG (II) (V(max) = 6.5 pmol/min/mg of protein, K(m) = 7.8 microM). Among the animal liver microsomes examined, all species (rat, mouse, dog, and marmoset) demonstrated conjugation to form both mono-BVMG (I) and mono-BVMG (II), with dog liver microsomes exhibiting a higher formation rate for mono-BVMG (I), whereas marmoset liver microsomes showed a higher formation rate for mono-BVMG (II). The data suggest a primary role of UGT1A3 for the glucuronidation of BVM.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号