Abstract: | Non-lysosomal protein degradation in eukaryotic cells involves a proteolytic complex referred to as 26S proteasome that consists of a 20S core particle and one or two 19S regulatory particles. We have cloned the gene RPN1 encoding Rpn1 (regulatory-particle non-ATPase subunit 1), one of the largest subunits of proteasome, from Trypanosoma cruzi. It contains 2712 bp and encodes 904 amino acid residues with a calculated molecular mass of 98.2 kDa and an isoelectric point of 5.2. The predicted amino acid sequence of the trypanosomatid Rpn1 shares 39.0 and 32.0% overall identities with human Rpn1 and Saccharomyces cerevisiae Nas1 (non-ATPase subunit 1), an Rpn1 homolog, respectively, while the sequence identities among T. cruzi, Plasmodium falciparum, and Entamoeba histolytica Rpn1 are approximately 30%. T. cruzi Rpn1 contains nine repeats of about 36 amino acid residues conserved in Rpn1s from various organisms. T. cruzi RPN1 is located on the 2300- and 1900-kb chromosomal DNA, displays a putative allelic variation as RPN1-1 and RPN1-2 with 98.8% identity between these two putative gene products, and is transcribed from both alleles at a comparable level throughout the three developmental stages of the parasite, epimastigotes, trypomastigotes, and amastigotes. The expression of the trypanosomatid Rpn1 in the temperature-sensitive nas1 yeast mutant rescued the growth defect at the restrictive temperature, indicating that Rpn1 functions as a Nas1 and probably assembles into the 19S regulatory particle of the yeast 26S proteasome. |