首页 | 本学科首页   官方微博 | 高级检索  
     


Learning and recall of incremental kinematic and dynamic sensorimotor transformations
Authors:Jessica?Klassen,Christine?Tong,J.?Randall?Flanagan  author-information"  >  author-information__contact u-icon-before"  >  mailto:flanagan@post.queensu.ca"   title="  flanagan@post.queensu.ca"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Department of Psychology and Centre for Neuroscience Studies, Queen"rsquo"s University, Kingston, Ontario, K7L 3N6, Canada
Abstract:Numerous studies have shown that when people encounter a sudden and novel sensorimotor transformation that alters perceived or actual movement, they gradually adapt and can later recall what they have learned if they encounter the transformation again. In this study, we tested whether retention and recall of learning is also observed when kinematic and dynamic transformations are introduced incrementally such that participants never experience large movement errors. Participants adapted their reaching movements to either a visuomotor rotation of hand position (kinematic transformation) or a rotary viscous force-field applied to the hand (dynamic transformation). These perturbations were introduced either incrementally or instantaneously. Thus, four groups of participants were tested with an incremental and an instantaneous group for both the kinematic and dynamic perturbations. To evaluate retention of learning, participants from all four groups were tested a day later on the same kinematic or dynamic perturbation presented instantaneously (at full strength). As expected, we found that subjects in the instantaneous group retained learning across days. We also found that, for both kinematic and dynamic perturbations, retention was equally good or better when the transformation was introduced incrementally. Because large and clearly detectable movement errors were not observed during adaptation to incremental perturbations, we conclude that such errors are not required for the learning and retention of internal models of kinematic and dynamic sensorimotor transformations.
Keywords:Motor learning  Internal models  Arm movement  Visuomotor rotation  Force-field
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号