首页 | 本学科首页   官方微博 | 高级检索  
检索        


Acquired fluconazole resistance and genetic clustering in Diutina (Candida) catenulata from clinical samples
Institution:1. The Aberdeen Fungal Group, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK;2. Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
Abstract:ObjectivesDiutina (Candida) catenulata is an ascomycetous yeast isolated from environmental sources and animals, occasionally infecting humans. The aim of this study is to shed light on the in vitro antifungal susceptibility and genetic diversity of this opportunistic yeast.MethodsForty-five D. catenulata strains isolated from various sources (including human and environmental sources) and originating from nine countries were included. Species identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and confirmed via internal transcribed spacer ribosomal DNA barcoding. In vitro antifungal susceptibility was determined for seven systemic antifungals via the gradient strip method after 48 hours of incubation at 35°C using Etest® (Biomérieux) or Liofilchem® strips. Isolates exhibiting fluconazole minimal inhibitory concentrations (MICs) of ≥8 μg/mL were investigated for mutations in the ERG11 gene. A novel microsatellite genotyping scheme consisting of four markers was developed to assess genetic diversity.ResultsMIC ranges for amphotericin B, caspofungin, micafungin, isavuconazole, and posaconazole were 0.19–1 μg/mL, 0.094–0.5 μg/mL, 0.012–0.064 μg/mL, 0.003–0.047 μg/mL, and 0.006–0.032 μg/mL, respectively. By comparison, a broad range of MICs was noted for fluconazole (0.75 to >256 μg/mL) and voriconazole (0.012–0.38 mg/L), the higher values being observed among clinical strains. The Y132F amino acid substitution, associated with azole resistance in various Candida species (C. albicans, C. tropicalis, C. parapsilosis, and C. orthopsilosis), was the main substitution identified. Although microsatellite typing showed extensive genetic diversity, most strains with high fluconazole MICs clustered together, suggesting human-to-human transmission or a common source of contamination.DiscussionThe high rate of acquired fluconazole resistance among clinical isolates of D. catenulata is of concern. In this study, we highlight a link between the genetic diversity of D. catenulata and its antifungal resistance patterns, suggesting possible clonal transmission of resistant isolates.
Keywords:Acquired antifungal resistance  Clonal cluster  Fluconazole  Microsatellite typing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号