首页 | 本学科首页   官方微博 | 高级检索  
检索        


Stereoselective modulation of ryanodine-sensitive calcium channels by the delta isomer of hexachlorocyclohexane (delta-HCH).
Authors:I N Pessah  F C Mohr  M Schiedt  R M Joy
Institution:Department of Veterinary Pharmacology and Toxicology, University of California, Davis.
Abstract:delta-Hexachlorocyclohexane (delta-HCH) is shown to be 30-fold more potent as a positive inotropic agent with rat atrial strips compared with lindane (gamma-HCH). Threshold and ED50 values for enhanced contractile force at a pacing frequency of 0.5 Hz are less than 1 microM and 2.2 microM for delta-HCH and 40 microM and 63 microM for gamma-HCH, respectively. Contracture developed in atria exposed to greater than 4 microM delta-HCH (ED50 = 11 microM) but not in atria exposed to gamma-HCH. Uptake and release of Ca++ measured from actively loaded cardiac sarcoplasmic reticulum (SR) vesicles is measured with antipyrylazo III. Although delta-HCH (30 microM) decreases Ca(++)-dependent ATPase by 20%, it does not significantly alter Ca++ loading in the presence of ruthenium red. Addition of delta-HCH (5-50 microM) after loading is complete causes rapid, dose-dependent release of Ca++ from SR. Ca++ release induced by delta-HCH is markedly stereoselective. Compared with gamma-HCH (50 microM), delta-HCH (50 microM) induces a nearly 20-fold higher initial rate of Ca++ release (4.3 nmol of Ca++/mg/sec). Studies with 3H]ryanodine demonstrate that delta-HCH sharply inhibits Ca(++)- or daunorubicin-activated radioligand binding (IC50 = 37 and 25 microM, respectively, logit slope = 2). Inhibition of 3H]ryanodine-binding by delta-HCH is stereoselective inasmuch as IC50 values for alpha, beta and gamma isomers are greater than 100 microM. The delta-HCH modified Ca++ channel appears to proceed by a noncompetitive mechanism (reducing Bmax in equilibrium experiments) with respect to the conformationally sensitive binding site for 3H]ryanodine.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号