首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces
Authors:Hofstetter Birgit  Gamsjaeger Sonja  Phipps Roger J  Recker Robert R  Ebetino Frank H  Klaushofer Klaus  Paschalis Eleftherios P
Affiliation:Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
Abstract:We used Raman and Fourier transform infrared microspectroscopy (FTIRM) analysis to examine the intrinsic bone material properties at actively bone-forming trabecular surfaces in iliac crest biopsies from women with postmenopausal osteoporosis (PMO) who were treated with either alendronate (ALN) or risedronate (RIS). At eight study sites, women were identified who had postmenopausal osteoporosis (PMO), were at least 5 years postmenopause, and had been on long-term therapy (either 3-5 years or >5 years) with daily or weekly ALN or RIS. Following standard tetracycline labeling, biopsies were collected from 102 women (33 treated with ALN for 3-5 years [ALN-3], 35 with ALN for >5 years [ALN-5], 26 with RIS for 3-5 years [RIS-3], and 8 with RIS for >5 years [RIS-5]) and were analyzed at anatomical areas of similar tissue age in bone-forming areas (within the fluorescent double labels). The following outcomes were monitored and reported: mineral to matrix ratio (corresponding to ash weight), relative proteoglycan content (regulating mineralization commencement), mineral maturity (indicative of the mineral crystallite chemistry and stoichiometry, and having a direct bearing on crystallite shape and size), and the ratio of two of the major enzymatic collagen cross-links (pyridinoline/divalent). In RIS-5 there was a significant decrease in the relative proteoglycan content (-5.83% compared to ALN-5), while in both RIS-3 and RIS-5 there was significantly lower mineral maturity/crystallinity (-6.78% and -13.68% versus ALN-3 and ALN-5, respectively), and pyridinoline/divalent collagen cross-link ratio (-23.09% and -41.85% versus ALN-3 and ALN-5, respectively). The results of the present study indicate that ALN and RIS exert differential effects on the intrinsic bone material properties at actively bone-forming trabecular surfaces.
Keywords:ALENDRONATE  RISEDRONATE  BONE MATERIAL PROPERTIES  FOURIER TRANSFORM INFRARED IMAGING  RAMAN MICROSPECTROSCOPY  MINERAL MATURITY/CRYSTALLINITY  COLLAGEN CROSS‐LINKS
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号