首页 | 本学科首页   官方微博 | 高级检索  
检索        


Meiotic segregation of circular plasmid-minichromosomes from intact chromosomes in Saccharomyces cerevisiae
Authors:David B Kaback
Institution:(1) Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Graduate School of Biomedical Sciences, 07103 Newark, NY, USA
Abstract:Summary Distributive disjunction is defined by first meiotic division segregation of either two nonhomologous chromosomes that lack homologous pairing partners, or of two homologous chromosomes that have failed to undergo crossing-over. In the yeast Saccharomyces cerevisiae, plasmid minichromosomes, synthetic linear chromosomes and a fragment of a real chromosome have been observed to segregate from nonhomologous DNA species at the first meiotic divisions. Suggesting that this organism may have a distributive mechanism for chromosome segregation. However, it is not known whether intact chromosomes also participate in a distributive process. To determine whether intact, full length, S. cerevisiae chromosomes could segregate from nonhomologous chromosomal species, the meiotic behavior of an unpaired intact copy of chromosome I has been analyzed with respect to several centromere-containing circular plasmid minichromosomes. Strains monosomic or trisomic for chromosome I were transformed with centromere plasmids containing either homologous or nonhomologous inserts, sporulated, and analyzed genetically both for the presence of plasmid and for the number of copies of chromosome 1. Each plasmid segregated from an intact unpaired copy of chromosome I at the first meiotic division in a significant majority (63–93%) of the asci examined. These results suggest that intact chromosomes from S. cerevisiae are capable of distributive disjunction.
Keywords:Yeast  Meiosis  Distributive disjunction
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号