首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Stenosis Asymmetry on Blood Flow and Artery Compression: A Three-Dimensional Fluid-Structure Interaction Model
Authors:Tang  Dalin  Yang  Chun  Kobayashi  Shunichi  Zheng  Jie  Vito  Raymond P.
Affiliation:(1) Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA;(2) Mathematics Department, Beijing Normal University, China;(3) Department of Functional Machinery and Mechanics, Shinshu University, Nagano, Japan;(4) Mallinkcrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO;(5) School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
Abstract:A nonlinear three-dimensional thick-wall model with fluid-structure interactions is introduced to simulate blood flow in carotid arteries with an asymmetric stenosis to quantify the effects of stenosis severity, eccentricity, and pressure conditions on blood flow and artery compression (compressive stress in the wall). Mechanical properties of the tube wall are measured using a thick-wall stenosis model made of polyvinyl alcohal hydrogel whose mechanical properties are close to that of carotid arteries. A hyperelastic Mooney–Rivlin model is used to implement the experimentally measured nonlinear elastic properties of the tube wall. A 36.5% pre-axial stretch is applied to make the simulation physiological. The Navier–Stokes equations in curvilinear form are used for the fluid model. Our results indicate that severe stenosis causes critical flow conditions, high tensile stress, and considerable compressive stress in the stenosis plaque which may be related to artery compression and plaque cap rupture. Stenosis asymmetry leads to higher artery compression, higher shear stress and a larger flow separation region. Computational results are verified by available experimental data. © 2003 Biomedical Engineering Society.PAC2003: 8719Uv, 8710+e
Keywords:Stroke  Heart attack  Plaque cap rupture  Collapsible  Finite difference  Fluid-structure interaction  Nonlinear elasticity  Iterative  Generalized finite difference
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号