首页 | 本学科首页   官方微博 | 高级检索  
     


Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells
Authors:Wang Jian-an  Chen Tie-long  Jiang Jun  Shi Heng  Gui Chun  Luo Rong-hua  Xie Xiao-jie  Xiang Mei-xiang  Zhang Xing
Affiliation:[1]Department of Cardiology, the Second Affiliated Hospital, College of Medicine, Hangzhou 310016, China [2]Clinical Research Institute, Sir Run Run Shaw Hospital College of Medicine, Zhejiang University, Hangzhou 310016, China [3]Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine Hangzhou 310007, China
Abstract:AIM: Mesenchymal stem cells (MSC) are a promising candidate for cardiac replacement therapies. However, the majority of transplanted MSC are readily lost after transplantation because of poor blood supply, ischemia-reperfusion, and inflammatory factors. We aimed to study the effects of hypoxia preconditioning (HPC) on hypoxia/reoxygenation-induced apoptosis of MSC. METHODS: Three generations of MSC were divided into 6 groups, including the normal group, hypoxia-reoxygenation (H/R) group, cyclosporine A (CsA), and the HPC 10 min, 20 min, and 30 min groups. The apoptotic index, cell viability, mitochondrial membrane potential, translocation of Bcl-2 and bax, extracellular regulated kinase (ERK), Akt, hypoxia-inducible factor 1-alpha, and the vascular endothelial growth factor (VEGF) were tested after H/R treatment. RESULTS: HPC decreased the apoptotic index and increased the viability induced by H/R. Moreover, HPC markedly stabilized mitochondrial membrane potential, upregulated Bcl-2 and VEGF expressions, and increased the phosphorylation of ERK and Akt. As a positive control, CsA has the same function as HPC, except for promoting ERK and Akt phosphorylation and upregulating VEGF. CONCLUSION: HPC had a protective effect against MSC apoptosis induced by H/R via stabilizing mitochondrial membrane potential, upregulating Bcl-2 and VEGF, and promoting ERK and Akt phosphorylation. HPC has implications for the development of novel stem cell protective strategies.
Keywords:
本文献已被 维普 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号