首页 | 本学科首页   官方微博 | 高级检索  
     


Motor and sensory Schwann cell phenotype commitment is diminished by extracorporeal shockwave treatment in vitro
Authors:David Hercher  Heinz Redl  Christina M.A.P. Schuh
Abstract:The gold standard for peripheral nerve regeneration uses a sensory autograft to bridge a motor/sensory defect site. For motor nerves to regenerate, Schwann cells (SC) myelinate the newly grown axon. Sensory SCs have a reduced ability to produce myelin, partially explaining low success rates of autografts. This issue is masked in pre‐clinical research by the excessive use of the rat sciatic nerve defect model, utilizing a mixed nerve with motor and sensory SCs. Aim of this study was to utilize extracorporeal shockwave treatment as a novel tool to influence SC phenotype. SCs were isolated from motor, sensory and mixed rat nerves and in vitro differences between them were assessed concerning initial cell number, proliferation rate, neurite outgrowth as well as ability to express myelin. We verified the inferior capacity of sensory SCs to promote neurite outgrowth and express myelin‐associated proteins. Motor Schwann cells demonstrated low proliferation rates, but strongly reacted to pro‐myelination stimuli. It is noteworthy for pre‐clinical research that sciatic SCs are a strongly mixed culture, not representing one or the other. Extracorporeal shockwave treatment (ESWT), induced in motor SCs an increased proliferation profile, while sensory SCs gained the ability to promote neurite outgrowth and express myelin‐associated markers. We demonstrate a strong phenotype commitment of sciatic, motor, and sensory SCs in vitro, proposing the experimental use of SCs from pure cultures to better mimic clinical situations. Furthermore we provide arguments for using ESWT on autografts to improve the regenerative capacity of sensory SCs.
Keywords:extracorporeal shockwave treatment  peripheral nerve regeneration  Schwann cell phenotype  Schwann cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号