首页 | 本学科首页   官方微博 | 高级检索  
     


Accurate quantification of urinary metabolites for predictive models manifest clinicopathology of renal cell carcinoma
Authors:Tomonori Sato  Yoshihide Kawasaki  Masamitsu Maekawa  Shinya Takasaki  Shuichi Shimada  Kento Morozumi  Masahiko Sato  Naoki Kawamorita  Shinichi Yamashita  Koji Mitsuzuka  Nariyasu Mano  Akihiro Ito
Abstract:Using surgically resected tissue, we identified characteristic metabolites related to the diagnosis and malignant status of clear cell renal cell carcinoma (ccRCC). Specifically, we quantified these metabolites in urine samples to evaluate their potential as clinically useful noninvasive biomarkers of ccRCC. Between January 2016 and August 2018, we collected urine samples from 87 patients who had pathologically diagnosed ccRCC and from 60 controls who were patients with benign urological conditions. Metabolite concentrations in urine samples were investigated using liquid chromatography‐mass spectrometry with an internal standard and adjustment based on urinary creatinine levels. We analyzed the association between metabolite concentration and predictability of diagnosis and of malignant status by multiple logistic regression and receiver operating characteristic (ROC) curves to establish ccRCC predictive models. Of the 47 metabolites identified in our previous study, we quantified 33 metabolites in the urine samples. Multiple logistic regression analysis revealed 5 metabolites (l ‐glutamic acid, lactate, d ‐sedoheptulose 7‐phosphate, 2‐hydroxyglutarate, and myoinositol) for a diagnostic predictive model and 4 metabolites (l ‐kynurenine, l ‐glutamine, fructose 6‐phosphate, and butyrylcarnitine) for a predictive model for clinical stage III/IV. The sensitivity and specificity of the diagnostic predictive model were 93.1% and 95.0%, respectively, yielding an area under the ROC curve (AUC) of 0.966. The sensitivity and specificity of the predictive model for clinical stage were 88.5% and 75.4%, respectively, with an AUC of 0.837. In conclusion, quantitative analysis of urinary metabolites yielded predictive models for diagnosis and malignant status of ccRCC. Urinary metabolites have the potential to be clinically useful noninvasive biomarkers of ccRCC to improve patient outcomes.
Keywords:biomarker  metabolomics  predictive model  renal cell carcinoma  urinary metabolite
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号