首页 | 本学科首页   官方微博 | 高级检索  
     


The possible role of the NO-cGMP pathway in nociception: different spinal and supraspinal action of enzyme blockers on rat dorsal horn neurones
Authors:Hoheisel Ulrich  Unger Thomas  Mense Siegfried
Affiliation:1. Institut für Anatomie und Zellbiologie, Universität Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany;2. Institut für Pharmakologie und Toxikologie, Charité, Humboldt-Universität, Dorotheenstraße 94, D-10117 Berlin, Germany
Abstract:In the literature, the pro- or antinociceptive effects of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) are discussed controversially. Our laboratory and others have reported that in the spinal cord a local lack of NO has an excitatory action on the ongoing (background) activity of dorsal horn neurones. Here, we tested the hypothesis that this effect of NO is mediated by cGMP and that part of the controversy is due to differences in the spinal and supraspinal actions of both compounds. In anaesthetised rats, impulse activity of lumbar dorsal horn neurones was recorded, and blockers of NO- and cGMP-synthesis, as well as the phosphodiesterase 5 (PDE5) inhibitor sildenafil (which increases the cGMP level), or 8-Bromo-cGMP (a membrane permeable cGMP analogue) were administered spinally or supraspinally. Topical superfusion of the spinal cord with a blocker of the guanylyl cyclase (ODQ) to reduce the cGMP level led to an increase in background activity of nociceptive lumbar dorsal horn neurones similar to that caused by l-NAME, a blocker of the NO synthase. Spinal superfusion with sildenafil or 8-Bromo-cGMP had no excitatory effect. In contrast, injections of sildenafil or 8-Bromo-cGMP into the third cerebral ventricle caused an increased background activity in lumbar dorsal horn neurones, while l-NAME and ODQ were ineffective. The results show that at the spinal level, a lack of cGMP and NO has an excitatory action on dorsal horn neurones, whereas supraspinally an elevated level of cGMP is excitatory.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号